ripemd160.c 8.52 KB
Newer Older
Andres Mejia's avatar
Andres Mejia committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/* ripemd160.c  -  RIPE-MD160
 * Copyright (C) 1998, 2001, 2002, 2003 Free Software Foundation, Inc.
 *
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 *
 * The nettle library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with the nettle library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA.
 */

#if HAVE_CONFIG_H
# include "config.h"
#endif
#include <string.h>
#include <assert.h>

#include "ripemd160.h"

/*********************************
 * RIPEMD-160 is not patented, see (as of 25.10.97)
 *   http://www.esat.kuleuven.ac.be/~bosselae/ripemd160.html
 * Note that the code uses Little Endian byteorder, which is good for
 * 386 etc, but we must add some conversion when used on a big endian box.
 *
 *
 * Pseudo-code for RIPEMD-160
 *
 * RIPEMD-160 is an iterative hash function that operates on 32-bit words.
 * The round function takes as input a 5-word chaining variable and a 16-word
 * message block and maps this to a new chaining variable. All operations are
 * defined on 32-bit words. Padding is identical to that of MD4.
 *
 *
 * RIPEMD-160: definitions
 *
 *
 *   nonlinear functions at bit level: exor, mux, -, mux, -
 *
 *   f(j, x, y, z) = x XOR y XOR z      (0 <= j <= 15)
 *   f(j, x, y, z) = (x AND y) OR (NOT(x) AND z)  (16 <= j <= 31)
 *   f(j, x, y, z) = (x OR NOT(y)) XOR z    (32 <= j <= 47)
 *   f(j, x, y, z) = (x AND z) OR (y AND NOT(z))  (48 <= j <= 63)
 *   f(j, x, y, z) = x XOR (y OR NOT(z))    (64 <= j <= 79)
 *
 *
 *   added constants (hexadecimal)
 *
 *   K(j) = 0x00000000      (0 <= j <= 15)
 *   K(j) = 0x5A827999     (16 <= j <= 31)  int(2**30 x sqrt(2))
 *   K(j) = 0x6ED9EBA1     (32 <= j <= 47)  int(2**30 x sqrt(3))
 *   K(j) = 0x8F1BBCDC     (48 <= j <= 63)  int(2**30 x sqrt(5))
 *   K(j) = 0xA953FD4E     (64 <= j <= 79)  int(2**30 x sqrt(7))
 *   K'(j) = 0x50A28BE6     (0 <= j <= 15)      int(2**30 x cbrt(2))
 *   K'(j) = 0x5C4DD124    (16 <= j <= 31)      int(2**30 x cbrt(3))
 *   K'(j) = 0x6D703EF3    (32 <= j <= 47)      int(2**30 x cbrt(5))
 *   K'(j) = 0x7A6D76E9    (48 <= j <= 63)      int(2**30 x cbrt(7))
 *   K'(j) = 0x00000000    (64 <= j <= 79)
 *
 *
 *   selection of message word
 *
 *   r(j)      = j          (0 <= j <= 15)
 *   r(16..31) = 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8
 *   r(32..47) = 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12
 *   r(48..63) = 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2
 *   r(64..79) = 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13
 *   r0(0..15) = 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12
 *   r0(16..31)= 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2
 *   r0(32..47)= 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13
 *   r0(48..63)= 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14
 *   r0(64..79)= 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11
 *
 *
 *   amount for rotate left (rol)
 *
 *   s(0..15)  = 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8
 *   s(16..31) = 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12
 *   s(32..47) = 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5
 *   s(48..63) = 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12
 *   s(64..79) = 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6
 *   s'(0..15) = 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6
 *   s'(16..31)= 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11
 *   s'(32..47)= 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5
 *   s'(48..63)= 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8
 *   s'(64..79)= 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11
 *
 *
 *   initial value (hexadecimal)
 *
 *   h0 = 0x67452301; h1 = 0xEFCDAB89; h2 = 0x98BADCFE; h3 = 0x10325476;
 *              h4 = 0xC3D2E1F0;
 *
 *
 * RIPEMD-160: pseudo-code
 *
 *   It is assumed that the message after padding consists of t 16-word blocks
 *   that will be denoted with X[i][j], with 0 <= i <= t-1 and 0 <= j <= 15.
 *   The symbol [+] denotes addition modulo 2**32 and rol_s denotes cyclic left
 *   shift (rotate) over s positions.
 *
 *
 *   for i := 0 to t-1 {
 *   A := h0; B := h1; C := h2; D = h3; E = h4;
 *   A' := h0; B' := h1; C' := h2; D' = h3; E' = h4;
 *   for j := 0 to 79 {
 *       T := rol_s(j)(A [+] f(j, B, C, D) [+] X[i][r(j)] [+] K(j)) [+] E;
 *       A := E; E := D; D := rol_10(C); C := B; B := T;
 *       T := rol_s'(j)(A' [+] f(79-j, B', C', D') [+] X[i][r'(j)]
                   [+] K'(j)) [+] E';
 *       A' := E'; E' := D'; D' := rol_10(C'); C' := B'; B' := T;
 *   }
 *   T := h1 [+] C [+] D'; h1 := h2 [+] D [+] E'; h2 := h3 [+] E [+] A';
 *   h3 := h4 [+] A [+] B'; h4 := h0 [+] B [+] C'; h0 := T;
 *   }
 */

/* Some examples:
 * ""                    9c1185a5c5e9fc54612808977ee8f548b2258d31
 * "a"                   0bdc9d2d256b3ee9daae347be6f4dc835a467ffe
 * "abc"                 8eb208f7e05d987a9b044a8e98c6b087f15a0bfc
 * "message digest"      5d0689ef49d2fae572b881b123a85ffa21595f36
 * "a...z"               f71c27109c692c1b56bbdceb5b9d2865b3708dbc
 * "abcdbcde...nopq"     12a053384a9c0c88e405a06c27dcf49ada62eb2b
 * "A...Za...z0...9"     b0e20b6e3116640286ed3a87a5713079b21f5189
 * 8 times "1234567890"  9b752e45573d4b39f4dbd3323cab82bf63326bfb
 * 1 million times "a"   52783243c1697bdbe16d37f97f68f08325dc1528
 */

void
ripemd160_init(struct ripemd160_ctx *ctx)
{
  ctx->digest[0] = 0x67452301;
  ctx->digest[1] = 0xEFCDAB89;
  ctx->digest[2] = 0x98BADCFE;
  ctx->digest[3] = 0x10325476;
  ctx->digest[4] = 0xC3D2E1F0;
  memset(&ctx->block, 0, sizeof(ctx->block));
  ctx->nblocks = 0;
  ctx->index = 0;
}

/* Update the message digest with the contents
 * of DATA with length LENGTH.
 */
void
ripemd160_update(struct ripemd160_ctx *ctx, unsigned length, const uint8_t *data)
{
  if(ctx->index == 64)  /* flush the buffer */
  {
    _nettle_ripemd160_compress(ctx->digest, ctx->block);
    ctx->index = 0;
    ctx->nblocks++;
  }
  if(!data)
    return;
  if(ctx->index)
  {
    for(; length && ctx->index < 64; length--)
      ctx->block[ctx->index++] = *data++;
    ripemd160_update(ctx, 0, NULL);
    if(!length)
      return;
  }

  while( length >= 64 )
  {
    _nettle_ripemd160_compress(ctx->digest, data);
    ctx->index = 0;
    ctx->nblocks++;
    length -= 64;
    data += 64;
  }
  for(; length && ctx->index < 64; length--)
    ctx->block[ctx->index++] = *data++;
}

/* The routine terminates the computation */
static void
ripemd160_final(struct ripemd160_ctx *ctx)
{
  uint32_t t, msb, lsb;
  uint8_t *p;

  ripemd160_update(ctx, 0, NULL); /* flush */;

  t = ctx->nblocks;
  /* multiply by 64 to make a byte count */
  lsb = t << 6;
  msb = t >> 26;
  /* add the count */
  t = lsb;
  if( (lsb += ctx->index) < t )
    msb++;
  /* multiply by 8 to make a bit count */
  t = lsb;
  lsb <<= 3;
  msb <<= 3;
  msb |= t >> 29;

  if( ctx->index < 56 )  /* enough room */
  {
    ctx->block[ctx->index++] = 0x80; /* pad */
    while( ctx->index < 56 )
      ctx->block[ctx->index++] = 0;  /* pad */
  }
  else  /* need one extra block */
  {
    ctx->block[ctx->index++] = 0x80; /* pad character */
    while( ctx->index < 64 )
      ctx->block[ctx->index++] = 0;
    ripemd160_update(ctx, 0, NULL);  /* flush */;
    memset(ctx->block, 0, 56 ); /* fill next block with zeroes */
  }
  /* append the 64 bit count */
  ctx->block[56] = lsb;
  ctx->block[57] = lsb >>  8;
  ctx->block[58] = lsb >> 16;
  ctx->block[59] = lsb >> 24;
  ctx->block[60] = msb;
  ctx->block[61] = msb >>  8;
  ctx->block[62] = msb >> 16;
  ctx->block[63] = msb >> 24;
  _nettle_ripemd160_compress(ctx->digest, ctx->block);

  p = ctx->block;
#ifdef WORDS_BIGENDIAN
#define X(a) do { *p++ = ctx->digest[a]    ; *p++ = ctx->digest[a] >> 8; \
  *p++ = ctx->digest[a] >> 16; *p++ = ctx->digest[a] >> 24; } while(0)
#else /* little endian */
#define X(a) do { *(uint32_t*)p = ctx->digest[a] ; p += 4; } while(0)
#endif
  X(0);
  X(1);
  X(2);
  X(3);
  X(4);
#undef X
}

void
ripemd160_digest(struct ripemd160_ctx *ctx, unsigned length, uint8_t *digest)
{
  assert(length <= RIPEMD160_DIGEST_SIZE);

  ripemd160_final(ctx);
  memcpy(digest, ctx->block, length);
  ripemd160_init(ctx);
}