bignum-next-prime.c 3.79 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
/* bignum-next-prime.c
 *
 */

/* nettle, low-level cryptographics library
 *
 * Copyright (C) 2002 Niels Mller
 *  
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
 * The nettle library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with the nettle library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA.
 */

#if HAVE_CONFIG_H
# include "config.h"
#endif

#include <limits.h>

#include "bignum.h"

#include "nettle-internal.h"

/* From gmp.h */
/* Test for gcc >= maj.min, as per __GNUC_PREREQ in glibc */
#if defined (__GNUC__) && defined (__GNUC_MINOR__)
#define GNUC_PREREQ(maj, min) \
  ((__GNUC__ << 16) + __GNUC_MINOR__ >= ((maj) << 16) + (min))
#else
#define GNUC_PREREQ(maj, min)  0
#endif

#if GNUC_PREREQ (3,0)
# define UNLIKELY(cond) __builtin_expect ((cond) != 0, 0)
#else
# define UNLIKELY(cond) cond
#endif

Niels Möller's avatar
Niels Möller committed
50
51
/* From some benchmarking using the examples nextprime(200!) and
   nextprime(240!), it seems that it pays off to use a prime list up
52
53
54
55
56
57
58
59
60
   to around 5000--10000 primes. There are 6541 odd primes less than
   2^16. */
static const uint16_t primes[] = {
  /* Generated by

     ./examples/eratosthenes 65535 \
     | awk '{ if (NR % 10 == 2) printf ("\n"); if (NR > 1) printf("%d, ", $1); }
            END { printf("\n"); }' > prime-list.h
  */
61
62
63
64
65
  #include "prime-list.h"
};

#define NUMBER_OF_PRIMES (sizeof(primes) / sizeof(primes[0]))

66
67
68
69
70
#ifdef mpz_millerrabin
# define PRIME_P mpz_millerrabin
#else
# define PRIME_P mpz_probab_prime_p
#endif
71
72
73

/* NOTE: The mpz_nextprime in current GMP is unoptimized. */
void
74
nettle_next_prime(mpz_t p, mpz_t n, unsigned count, unsigned prime_limit,
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
		  void *progress_ctx, nettle_progress_func progress)
{
  mpz_t tmp;
  TMP_DECL(moduli, unsigned, NUMBER_OF_PRIMES);
  
  unsigned difference;

  if (prime_limit > NUMBER_OF_PRIMES)
    prime_limit = NUMBER_OF_PRIMES;
  
  /* First handle tiny numbers */
  if (mpz_cmp_ui(n, 2) <= 0)
    {
      mpz_set_ui(p, 2);
      return;
    }
  mpz_set(p, n);
  mpz_setbit(p, 0);

  if (mpz_cmp_ui(p, 8) < 0)
    return;

  mpz_init(tmp);

  if (mpz_cmp_ui(p, primes[prime_limit-1]) <= 0)
    /* Use only 3, 5 and 7 */
    /* FIXME: Could do binary search in the table. */
    prime_limit = 3;
  
  /* Compute residues modulo small odd primes */
  /* FIXME: Could be sped up by collecting limb-sized products of the
     primes, to reduce the calls to mpz_fdiv_ui */
  
  TMP_ALLOC(moduli, prime_limit);
  {
    unsigned i;
    for (i = 0; i < prime_limit; i++)
      moduli[i] = mpz_fdiv_ui(p, primes[i]);
  }
  
  for (difference = 0; ; difference += 2)
    {
      int composite = 0;
      unsigned i;
      
      if (difference >= UINT_MAX - 10)
	{ /* Should not happen, at least not very often... */
	  mpz_add_ui(p, p, difference);
	  difference = 0;
	}

      /* First check residues */
      for (i = 0; i < prime_limit; i++)
	{
	  if (moduli[i] == 0)
	    composite = 1;
131

132
	  moduli[i] += 2;
133
	  if (UNLIKELY(moduli[i] >= primes[i]))
134
135
136
137
138
139
140
141
142
143
144
145
	    moduli[i] -= primes[i];
	}
      if (composite)
	continue;
      
      mpz_add_ui(p, p, difference);
      difference = 0;

      if (progress)
	progress(progress_ctx, '.');

      /* Miller-Rabin test */
146
      if (PRIME_P(p, count))
147
148
	break;

149
#if 0
150
151
      if (progress)
	progress(progress_ctx, '*');
152
#endif
153
154
155
    }
  mpz_clear(tmp);
}