twofish.c 14.7 KB
Newer Older
1
/* twofish.c
2

3
   The twofish block cipher.
Ruud de Rooij's avatar
Ruud de Rooij committed
4

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
   Copyright (C) 2001, 2014 Niels Möller
   Copyright (C) 1999 Ruud de Rooij <ruud@debian.org>

   Modifications for lsh, integrated testing
   Copyright (C) 1999 J.H.M. Dassen (Ray) <jdassen@wi.LeidenUniv.nl>

   This file is part of GNU Nettle.

   GNU Nettle is free software: you can redistribute it and/or
   modify it under the terms of either:

     * the GNU Lesser General Public License as published by the Free
       Software Foundation; either version 3 of the License, or (at your
       option) any later version.

   or

     * the GNU General Public License as published by the Free
       Software Foundation; either version 2 of the License, or (at your
       option) any later version.

   or both in parallel, as here.

   GNU Nettle is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received copies of the GNU General Public License and
   the GNU Lesser General Public License along with this program.  If
   not, see http://www.gnu.org/licenses/.
*/
Ruud de Rooij's avatar
Ruud de Rooij committed
37

38 39 40
#if HAVE_CONFIG_H
# include "config.h"
#endif
41 42

#include <assert.h>
Niels Möller's avatar
Niels Möller committed
43
#include <string.h>
44

45 46 47 48
#include "twofish.h"

#include "macros.h"

Ruud de Rooij's avatar
Ruud de Rooij committed
49 50 51 52 53 54 55 56 57 58 59 60 61
/* Bitwise rotations on 32-bit words.  These are defined as macros that
 * evaluate their argument twice, so do not apply to any expressions with
 * side effects.
 */

#define rol1(x) (((x) << 1) | (((x) & 0x80000000) >> 31))
#define rol8(x) (((x) << 8) | (((x) & 0xFF000000) >> 24))
#define rol9(x) (((x) << 9) | (((x) & 0xFF800000) >> 23))
#define ror1(x) (((x) >> 1) | (((x) & 0x00000001) << 31))

/* ------------------------------------------------------------------------- */

/* The permutations q0 and q1.  These are fixed permutations on 8-bit values.
62
 * The permutations have been computed using the program twofish-data,
Ruud de Rooij's avatar
Ruud de Rooij committed
63 64 65
 * which is distributed along with this file.
 */

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
static const uint8_t q0[256] = {
  0xA9,0x67,0xB3,0xE8,0x04,0xFD,0xA3,0x76,
  0x9A,0x92,0x80,0x78,0xE4,0xDD,0xD1,0x38,
  0x0D,0xC6,0x35,0x98,0x18,0xF7,0xEC,0x6C,
  0x43,0x75,0x37,0x26,0xFA,0x13,0x94,0x48,
  0xF2,0xD0,0x8B,0x30,0x84,0x54,0xDF,0x23,
  0x19,0x5B,0x3D,0x59,0xF3,0xAE,0xA2,0x82,
  0x63,0x01,0x83,0x2E,0xD9,0x51,0x9B,0x7C,
  0xA6,0xEB,0xA5,0xBE,0x16,0x0C,0xE3,0x61,
  0xC0,0x8C,0x3A,0xF5,0x73,0x2C,0x25,0x0B,
  0xBB,0x4E,0x89,0x6B,0x53,0x6A,0xB4,0xF1,
  0xE1,0xE6,0xBD,0x45,0xE2,0xF4,0xB6,0x66,
  0xCC,0x95,0x03,0x56,0xD4,0x1C,0x1E,0xD7,
  0xFB,0xC3,0x8E,0xB5,0xE9,0xCF,0xBF,0xBA,
  0xEA,0x77,0x39,0xAF,0x33,0xC9,0x62,0x71,
  0x81,0x79,0x09,0xAD,0x24,0xCD,0xF9,0xD8,
  0xE5,0xC5,0xB9,0x4D,0x44,0x08,0x86,0xE7,
  0xA1,0x1D,0xAA,0xED,0x06,0x70,0xB2,0xD2,
  0x41,0x7B,0xA0,0x11,0x31,0xC2,0x27,0x90,
  0x20,0xF6,0x60,0xFF,0x96,0x5C,0xB1,0xAB,
  0x9E,0x9C,0x52,0x1B,0x5F,0x93,0x0A,0xEF,
  0x91,0x85,0x49,0xEE,0x2D,0x4F,0x8F,0x3B,
  0x47,0x87,0x6D,0x46,0xD6,0x3E,0x69,0x64,
  0x2A,0xCE,0xCB,0x2F,0xFC,0x97,0x05,0x7A,
  0xAC,0x7F,0xD5,0x1A,0x4B,0x0E,0xA7,0x5A,
  0x28,0x14,0x3F,0x29,0x88,0x3C,0x4C,0x02,
  0xB8,0xDA,0xB0,0x17,0x55,0x1F,0x8A,0x7D,
  0x57,0xC7,0x8D,0x74,0xB7,0xC4,0x9F,0x72,
  0x7E,0x15,0x22,0x12,0x58,0x07,0x99,0x34,
  0x6E,0x50,0xDE,0x68,0x65,0xBC,0xDB,0xF8,
  0xC8,0xA8,0x2B,0x40,0xDC,0xFE,0x32,0xA4,
  0xCA,0x10,0x21,0xF0,0xD3,0x5D,0x0F,0x00,
  0x6F,0x9D,0x36,0x42,0x4A,0x5E,0xC1,0xE0,
};
Ruud de Rooij's avatar
Ruud de Rooij committed
100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static const uint8_t q1[256] = {
  0x75,0xF3,0xC6,0xF4,0xDB,0x7B,0xFB,0xC8,
  0x4A,0xD3,0xE6,0x6B,0x45,0x7D,0xE8,0x4B,
  0xD6,0x32,0xD8,0xFD,0x37,0x71,0xF1,0xE1,
  0x30,0x0F,0xF8,0x1B,0x87,0xFA,0x06,0x3F,
  0x5E,0xBA,0xAE,0x5B,0x8A,0x00,0xBC,0x9D,
  0x6D,0xC1,0xB1,0x0E,0x80,0x5D,0xD2,0xD5,
  0xA0,0x84,0x07,0x14,0xB5,0x90,0x2C,0xA3,
  0xB2,0x73,0x4C,0x54,0x92,0x74,0x36,0x51,
  0x38,0xB0,0xBD,0x5A,0xFC,0x60,0x62,0x96,
  0x6C,0x42,0xF7,0x10,0x7C,0x28,0x27,0x8C,
  0x13,0x95,0x9C,0xC7,0x24,0x46,0x3B,0x70,
  0xCA,0xE3,0x85,0xCB,0x11,0xD0,0x93,0xB8,
  0xA6,0x83,0x20,0xFF,0x9F,0x77,0xC3,0xCC,
  0x03,0x6F,0x08,0xBF,0x40,0xE7,0x2B,0xE2,
  0x79,0x0C,0xAA,0x82,0x41,0x3A,0xEA,0xB9,
  0xE4,0x9A,0xA4,0x97,0x7E,0xDA,0x7A,0x17,
  0x66,0x94,0xA1,0x1D,0x3D,0xF0,0xDE,0xB3,
  0x0B,0x72,0xA7,0x1C,0xEF,0xD1,0x53,0x3E,
  0x8F,0x33,0x26,0x5F,0xEC,0x76,0x2A,0x49,
  0x81,0x88,0xEE,0x21,0xC4,0x1A,0xEB,0xD9,
  0xC5,0x39,0x99,0xCD,0xAD,0x31,0x8B,0x01,
  0x18,0x23,0xDD,0x1F,0x4E,0x2D,0xF9,0x48,
  0x4F,0xF2,0x65,0x8E,0x78,0x5C,0x58,0x19,
  0x8D,0xE5,0x98,0x57,0x67,0x7F,0x05,0x64,
  0xAF,0x63,0xB6,0xFE,0xF5,0xB7,0x3C,0xA5,
  0xCE,0xE9,0x68,0x44,0xE0,0x4D,0x43,0x69,
  0x29,0x2E,0xAC,0x15,0x59,0xA8,0x0A,0x9E,
  0x6E,0x47,0xDF,0x34,0x35,0x6A,0xCF,0xDC,
  0x22,0xC9,0xC0,0x9B,0x89,0xD4,0xED,0xAB,
  0x12,0xA2,0x0D,0x52,0xBB,0x02,0x2F,0xA9,
  0xD7,0x61,0x1E,0xB4,0x50,0x04,0xF6,0xC2,
  0x16,0x25,0x86,0x56,0x55,0x09,0xBE,0x91,
};
Ruud de Rooij's avatar
Ruud de Rooij committed
135 136 137

/* ------------------------------------------------------------------------- */

138
/* uint8_t gf_multiply(uint8_t p, uint8_t a, uint8_t b)
Ruud de Rooij's avatar
Ruud de Rooij committed
139 140 141 142 143 144 145 146 147 148 149 150 151
 *
 * Multiplication in GF(2^8).
 *
 * This function multiplies a times b in the Galois Field GF(2^8) with
 * primitive polynomial p.
 * The representation of the polynomials a, b, and p uses bits with
 * values 2^i to represent the terms x^i.  The polynomial p contains an
 * implicit term x^8.
 *
 * Note that addition and subtraction in GF(2^8) is simply the XOR
 * operation.
 */

152 153
static uint8_t
gf_multiply(uint8_t p, uint8_t a, uint8_t b)
Ruud de Rooij's avatar
Ruud de Rooij committed
154
{
155 156
  uint32_t shift  = b;
  uint8_t result = 0;
157 158 159 160 161 162
  while (a)
    {
      if (a & 1) result ^= shift;
      a = a >> 1;
      shift = shift << 1;
      if (shift & 0x100) shift ^= p;
Ruud de Rooij's avatar
Ruud de Rooij committed
163
    }
164
  return result;
Ruud de Rooij's avatar
Ruud de Rooij committed
165 166 167 168 169 170
}

/* ------------------------------------------------------------------------- */

/* The matrix RS as specified in section 4.3 the twofish paper. */

171
static const uint8_t rs_matrix[4][8] = {
Ruud de Rooij's avatar
Ruud de Rooij committed
172 173 174 175 176
    { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E },
    { 0xA4, 0x56, 0x82, 0xF3, 0x1E, 0xC6, 0x68, 0xE5 },
    { 0x02, 0xA1, 0xFC, 0xC1, 0x47, 0xAE, 0x3D, 0x19 },
    { 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E, 0x03 } };

177
/* uint32_t compute_s(uint32_t m1, uint32_t m2);
Ruud de Rooij's avatar
Ruud de Rooij committed
178 179 180 181 182 183 184 185 186
 *
 * Computes the value RS * M, where M is a byte vector composed of the
 * bytes of m1 and m2.  Arithmetic is done in GF(2^8) with primitive
 * polynomial x^8 + x^6 + x^3 + x^2 + 1.
 *
 * This function is used to compute the sub-keys S which are in turn used
 * to generate the S-boxes.
 */

187 188
static uint32_t
compute_s(uint32_t m1, uint32_t m2)
Ruud de Rooij's avatar
Ruud de Rooij committed
189
{
190
  uint32_t s = 0;
191 192 193 194 195 196 197 198 199 200 201
  int i;
  for (i = 0; i < 4; i++)
    s |=  ((  gf_multiply(0x4D, m1,       rs_matrix[i][0])
	    ^ gf_multiply(0x4D, m1 >> 8,  rs_matrix[i][1])
	    ^ gf_multiply(0x4D, m1 >> 16, rs_matrix[i][2])
	    ^ gf_multiply(0x4D, m1 >> 24, rs_matrix[i][3])
	    ^ gf_multiply(0x4D, m2,       rs_matrix[i][4])
	    ^ gf_multiply(0x4D, m2 >> 8,  rs_matrix[i][5])
	    ^ gf_multiply(0x4D, m2 >> 16, rs_matrix[i][6])
	    ^ gf_multiply(0x4D, m2 >> 24, rs_matrix[i][7])) << (i*8));
  return s;
Ruud de Rooij's avatar
Ruud de Rooij committed
202 203 204 205 206 207 208 209
}

/* ------------------------------------------------------------------------- */

/* This table describes which q S-boxes are used for each byte in each stage
 * of the function h, cf. figure 2 of the twofish paper.
 */

210 211 212 213 214
static const uint8_t * const q_table[4][5] =
  { { q1, q1, q0, q0, q1 },
    { q0, q1, q1, q0, q0 },
    { q0, q0, q0, q1, q1 },
    { q1, q0, q1, q1, q0 } };
Ruud de Rooij's avatar
Ruud de Rooij committed
215 216 217

/* The matrix MDS as specified in section 4.3.2 of the twofish paper. */

218
static const uint8_t mds_matrix[4][4] = { { 0x01, 0xEF, 0x5B, 0x5B },
219 220 221
				 { 0x5B, 0xEF, 0xEF, 0x01 },
				 { 0xEF, 0x5B, 0x01, 0xEF },
				 { 0xEF, 0x01, 0xEF, 0x5B } };
Ruud de Rooij's avatar
Ruud de Rooij committed
222

223
/* uint32_t h_uint8_t(int k, int i, uint8_t x, uint8_t l0, uint8_t l1, uint8_t l2, uint8_t l3);
Ruud de Rooij's avatar
Ruud de Rooij committed
224 225 226 227 228 229 230 231 232
 *
 * Perform the h function (section 4.3.2) on one byte.  It consists of
 * repeated applications of the q permutation, followed by a XOR with
 * part of a sub-key.  Finally, the value is multiplied by one column of
 * the MDS matrix.  To obtain the result for a full word, the results of
 * h for the individual bytes are XORed.
 *
 * k is the key size (/ 64 bits), i is the byte number (0 = LSB), x is the
 * actual byte to apply the function to; l0, l1, l2, and l3 are the
233
 * appropriate bytes from the subkey.  Note that only l0..l(k-1) are used.
Ruud de Rooij's avatar
Ruud de Rooij committed
234 235
 */

236 237
static uint32_t
h_byte(int k, int i, uint8_t x, uint8_t l0, uint8_t l1, uint8_t l2, uint8_t l3)
Ruud de Rooij's avatar
Ruud de Rooij committed
238
{
239
  uint8_t y = q_table[i][4][l0 ^
240 241 242 243
            q_table[i][3][l1 ^
              q_table[i][2][k == 2 ? x : l2 ^
                q_table[i][1][k == 3 ? x : l3 ^ q_table[i][0][x]]]]];

244 245 246 247
  return ( ((uint32_t)gf_multiply(0x69, mds_matrix[0][i], y))
	   | ((uint32_t)gf_multiply(0x69, mds_matrix[1][i], y) << 8)
	   | ((uint32_t)gf_multiply(0x69, mds_matrix[2][i], y) << 16)
	   | ((uint32_t)gf_multiply(0x69, mds_matrix[3][i], y) << 24) );
Ruud de Rooij's avatar
Ruud de Rooij committed
248 249
}

250
/* uint32_t h(int k, uint8_t x, uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3);
Ruud de Rooij's avatar
Ruud de Rooij committed
251 252 253 254
 *
 * Perform the function h on a word.  See the description of h_byte() above.
 */

255 256
static uint32_t
h(int k, uint8_t x, uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3)
Ruud de Rooij's avatar
Ruud de Rooij committed
257
{
258 259 260 261
  return (  h_byte(k, 0, x, l0,       l1,       l2,       l3)
	  ^ h_byte(k, 1, x, l0 >> 8,  l1 >> 8,  l2 >> 8,  l3 >> 8)
	  ^ h_byte(k, 2, x, l0 >> 16, l1 >> 16, l2 >> 16, l3 >> 16)
	  ^ h_byte(k, 3, x, l0 >> 24, l1 >> 24, l2 >> 24, l3 >> 24) );
Ruud de Rooij's avatar
Ruud de Rooij committed
262 263 264 265 266 267 268 269 270 271 272 273
}


/* ------------------------------------------------------------------------- */

/* API */

/* Structure which contains the tables containing the subkeys and the
 * key-dependent s-boxes.
 */


274
/* Set up internal tables required for twofish encryption and decryption.
Ruud de Rooij's avatar
Ruud de Rooij committed
275 276
 *
 * The key size is specified in bytes.  Key sizes up to 32 bytes are
277
 * supported.  Larger key sizes are silently truncated.  
Ruud de Rooij's avatar
Ruud de Rooij committed
278 279
 */

280
void
281
twofish_set_key(struct twofish_ctx *context,
282
		size_t keysize, const uint8_t *key)
Ruud de Rooij's avatar
Ruud de Rooij committed
283
{
284 285
  uint8_t key_copy[32];
  uint32_t m[8], s[4], t;
286
  int i, j, k;
Ruud de Rooij's avatar
Ruud de Rooij committed
287

288
  /* Extend key as necessary */
Ruud de Rooij's avatar
Ruud de Rooij committed
289

290
  assert(keysize <= 32);
291

292 293
  /* We do a little more copying than necessary, but that doesn't
   * really matter. */
294 295 296
  memset(key_copy, 0, 32);
  memcpy(key_copy, key, keysize);

297 298 299
  for (i = 0; i<8; i++)
    m[i] = LE_READ_UINT32(key_copy + i*4);
  
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
  if (keysize <= 16)
    k = 2;
  else if (keysize <= 24)
    k = 3;
  else
    k = 4;

  /* Compute sub-keys */

  for (i = 0; i < 20; i++)
    {
      t = h(k, 2*i+1, m[1], m[3], m[5], m[7]);
      t = rol8(t);
      t += (context->keys[2*i] =
	    t + h(k, 2*i, m[0], m[2], m[4], m[6]));
      t = rol9(t);
      context->keys[2*i+1] = t;
Ruud de Rooij's avatar
Ruud de Rooij committed
317 318
    }

319
  /* Compute key-dependent S-boxes */
Ruud de Rooij's avatar
Ruud de Rooij committed
320

321 322
  for (i = 0; i < k; i++)
    s[k-1-i] = compute_s(m[2*i], m[2*i+1]);
Ruud de Rooij's avatar
Ruud de Rooij committed
323

324 325 326 327 328 329 330
  for (i = 0; i < 4; i++)
    for (j = 0; j < 256; j++)
      context->s_box[i][j] = h_byte(k, i, j,
				    s[0] >> (i*8),
				    s[1] >> (i*8),
				    s[2] >> (i*8),
				    s[3] >> (i*8));
Ruud de Rooij's avatar
Ruud de Rooij committed
331 332
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
void
twofish128_set_key(struct twofish_ctx *context, const uint8_t *key)
{
  twofish_set_key (context, TWOFISH128_KEY_SIZE, key);
}
void
twofish192_set_key(struct twofish_ctx *context, const uint8_t *key)
{
  twofish_set_key (context, TWOFISH192_KEY_SIZE, key);
}
void
twofish256_set_key(struct twofish_ctx *context, const uint8_t *key)
{
  twofish_set_key (context, TWOFISH256_KEY_SIZE, key);
}

349
/* Encrypt blocks of 16 bytes of data with the twofish algorithm.
Ruud de Rooij's avatar
Ruud de Rooij committed
350
 *
351
 * Before this function can be used, twofish_set_key() must be used in order to
Ruud de Rooij's avatar
Ruud de Rooij committed
352
 * set up various tables required for the encryption algorithm.
353
 * 
Ruud de Rooij's avatar
Ruud de Rooij committed
354 355 356 357 358 359
 * This function always encrypts 16 bytes of plaintext to 16 bytes of
 * ciphertext.  The memory areas of the plaintext and the ciphertext can
 * overlap.
 */

void
360
twofish_encrypt(const struct twofish_ctx *context,
361
		size_t length,
362 363
		uint8_t *ciphertext,
		const uint8_t *plaintext)
Ruud de Rooij's avatar
Ruud de Rooij committed
364
{
365 366
  const uint32_t * keys        = context->keys;
  const uint32_t (*s_box)[256] = context->s_box;
367 368

  assert( !(length % TWOFISH_BLOCK_SIZE) );
369
  for ( ; length; length -= TWOFISH_BLOCK_SIZE)
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    {  
      uint32_t words[4];
      uint32_t r0, r1, r2, r3, t0, t1;
      int i;

      for (i = 0; i<4; i++, plaintext += 4)
	words[i] = LE_READ_UINT32(plaintext);

      r0 = words[0] ^ keys[0];
      r1 = words[1] ^ keys[1];
      r2 = words[2] ^ keys[2];
      r3 = words[3] ^ keys[3];
  
      for (i = 0; i < 8; i++) {
	t1 = (  s_box[1][r1 & 0xFF]
		^ s_box[2][(r1 >> 8) & 0xFF]
		^ s_box[3][(r1 >> 16) & 0xFF]
		^ s_box[0][(r1 >> 24) & 0xFF]);
	t0 = (  s_box[0][r0 & 0xFF]
		^ s_box[1][(r0 >> 8) & 0xFF]
		^ s_box[2][(r0 >> 16) & 0xFF]
		^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
	r3 = (t1 + t0 + keys[4*i+9]) ^ rol1(r3);
	r2 = (t0 + keys[4*i+8]) ^ r2;
	r2 = ror1(r2);

	t1 = (  s_box[1][r3 & 0xFF]
		^ s_box[2][(r3 >> 8) & 0xFF]
		^ s_box[3][(r3 >> 16) & 0xFF]
		^ s_box[0][(r3 >> 24) & 0xFF]);
	t0 = (  s_box[0][r2 & 0xFF]
		^ s_box[1][(r2 >> 8) & 0xFF]
		^ s_box[2][(r2 >> 16) & 0xFF]
		^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
	r1 = (t1 + t0 + keys[4*i+11]) ^ rol1(r1);
	r0 = (t0 + keys[4*i+10]) ^ r0;
	r0 = ror1(r0);
      }

      words[0] = r2 ^ keys[4];
      words[1] = r3 ^ keys[5];
      words[2] = r0 ^ keys[6];
      words[3] = r1 ^ keys[7];

      for (i = 0; i<4; i++, ciphertext += 4)
	LE_WRITE_UINT32(ciphertext, words[i]);
    }
Ruud de Rooij's avatar
Ruud de Rooij committed
417 418
}

419
/* Decrypt blocks of 16 bytes of data with the twofish algorithm.
Ruud de Rooij's avatar
Ruud de Rooij committed
420
 *
421
 * Before this function can be used, twofish_set_key() must be used in order to
Ruud de Rooij's avatar
Ruud de Rooij committed
422
 * set up various tables required for the decryption algorithm.
423
 * 
Ruud de Rooij's avatar
Ruud de Rooij committed
424 425 426 427 428 429
 * This function always decrypts 16 bytes of ciphertext to 16 bytes of
 * plaintext.  The memory areas of the plaintext and the ciphertext can
 * overlap.
 */

void
430
twofish_decrypt(const struct twofish_ctx *context,
431
		size_t length,
432 433 434
		uint8_t *plaintext,
		const uint8_t *ciphertext)

Ruud de Rooij's avatar
Ruud de Rooij committed
435
{
436 437
  const uint32_t *keys  = context->keys;
  const uint32_t (*s_box)[256] = context->s_box;
438 439

  assert( !(length % TWOFISH_BLOCK_SIZE) );
440
  for ( ; length; length -= TWOFISH_BLOCK_SIZE)
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
    {  
      uint32_t words[4];
      uint32_t r0, r1, r2, r3, t0, t1;
      int i;

      for (i = 0; i<4; i++, ciphertext += 4)
	words[i] = LE_READ_UINT32(ciphertext);

      r0 = words[2] ^ keys[6];
      r1 = words[3] ^ keys[7];
      r2 = words[0] ^ keys[4];
      r3 = words[1] ^ keys[5];

      for (i = 0; i < 8; i++) {
	t1 = (  s_box[1][r3 & 0xFF]
		^ s_box[2][(r3 >> 8) & 0xFF]
		^ s_box[3][(r3 >> 16) & 0xFF]
		^ s_box[0][(r3 >> 24) & 0xFF]);
	t0 = (  s_box[0][r2 & 0xFF]
		^ s_box[1][(r2 >> 8) & 0xFF]
		^ s_box[2][(r2 >> 16) & 0xFF]
		^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
	r1 = (t1 + t0 + keys[39-4*i]) ^ r1;
	r1 = ror1(r1);
	r0 = (t0 + keys[38-4*i]) ^ rol1(r0);

	t1 = (  s_box[1][r1 & 0xFF]
		^ s_box[2][(r1 >> 8) & 0xFF]
		^ s_box[3][(r1 >> 16) & 0xFF]
		^ s_box[0][(r1 >> 24) & 0xFF]);
	t0 = (  s_box[0][r0 & 0xFF]
		^ s_box[1][(r0 >> 8) & 0xFF]
		^ s_box[2][(r0 >> 16) & 0xFF]
		^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
	r3 = (t1 + t0 + keys[37-4*i]) ^ r3;
	r3 = ror1(r3);
	r2 = (t0 + keys[36-4*i]) ^ rol1(r2);
      }

      words[0] = r0 ^ keys[0];
      words[1] = r1 ^ keys[1];
      words[2] = r2 ^ keys[2];
      words[3] = r3 ^ keys[3];

      for (i = 0; i<4; i++, plaintext += 4)
	LE_WRITE_UINT32(plaintext, words[i]);
    }
Ruud de Rooij's avatar
Ruud de Rooij committed
488
}