regex.c 158 KB
Newer Older
Per Cederqvist's avatar
Per Cederqvist committed
1
/* Extended regular expression matching and search library,
2
   version 0.12.
Per Cederqvist's avatar
Per Cederqvist committed
3
4
5
   (Implements POSIX draft P10003.2/D11.2, except for
   internationalization features.)

6
   Copyright (C) 1993 Free Software Foundation, Inc.
Per Cederqvist's avatar
Per Cederqvist committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */

/* AIX requires this to be the first thing in the file. */
#if defined (_AIX) && !defined (REGEX_MALLOC)
  #pragma alloca
#endif

27
#ifndef _GNU_SOURCE
Per Cederqvist's avatar
Per Cederqvist committed
28
#define _GNU_SOURCE
29
#endif
Per Cederqvist's avatar
Per Cederqvist committed
30
31
32
33

/* We need this for `regex.h', and perhaps for the Emacs include files.  */
#include <sys/types.h>

34
35
36
37
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

Per Cederqvist's avatar
Per Cederqvist committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/* The `emacs' switch turns on certain matching commands
   that make sense only in Emacs. */
#ifdef emacs

#include "lisp.h"
#include "buffer.h"
#include "syntax.h"

/* Emacs uses `NULL' as a predicate.  */
#undef NULL

#else  /* not emacs */

/* We used to test for `BSTRING' here, but only GCC and Emacs define
   `BSTRING', as far as I know, and neither of them use this code.  */
53
#if HAVE_STRING_H || STDC_HEADERS
Per Cederqvist's avatar
Per Cederqvist committed
54
#include <string.h>
55
#ifndef bcmp
Per Cederqvist's avatar
Per Cederqvist committed
56
#define bcmp(s1, s2, n)	memcmp ((s1), (s2), (n))
57
58
#endif
#ifndef bcopy
Per Cederqvist's avatar
Per Cederqvist committed
59
#define bcopy(s, d, n)	memcpy ((d), (s), (n))
60
61
#endif
#ifndef bzero
Per Cederqvist's avatar
Per Cederqvist committed
62
#define bzero(s, n)	memset ((s), 0, (n))
63
#endif
Per Cederqvist's avatar
Per Cederqvist committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#else
#include <strings.h>
#endif

#ifdef STDC_HEADERS
#include <stdlib.h>
#else
char *malloc ();
char *realloc ();
#endif


/* Define the syntax stuff for \<, \>, etc.  */

/* This must be nonzero for the wordchar and notwordchar pattern
   commands in re_match_2.  */
#ifndef Sword 
#define Sword 1
#endif

#ifdef SYNTAX_TABLE

extern char *re_syntax_table;

#else /* not SYNTAX_TABLE */

/* How many characters in the character set.  */
#define CHAR_SET_SIZE 256

static char re_syntax_table[CHAR_SET_SIZE];

static void
init_syntax_once ()
{
   register int c;
   static int done = 0;

   if (done)
     return;

   bzero (re_syntax_table, sizeof re_syntax_table);

   for (c = 'a'; c <= 'z'; c++)
     re_syntax_table[c] = Sword;

   for (c = 'A'; c <= 'Z'; c++)
     re_syntax_table[c] = Sword;

   for (c = '0'; c <= '9'; c++)
     re_syntax_table[c] = Sword;

   re_syntax_table['_'] = Sword;

   done = 1;
}

#endif /* not SYNTAX_TABLE */

#define SYNTAX(c) re_syntax_table[c]

#endif /* not emacs */

/* Get the interface, including the syntax bits.  */
#include "regex.h"

/* isalpha etc. are used for the character classes.  */
#include <ctype.h>
131
132
133

#ifndef isascii
#define isascii(c) 1
Per Cederqvist's avatar
Per Cederqvist committed
134
#endif
135
136
137
138
139

#ifdef isblank
#define ISBLANK(c) (isascii (c) && isblank (c))
#else
#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
Per Cederqvist's avatar
Per Cederqvist committed
140
#endif
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#ifdef isgraph
#define ISGRAPH(c) (isascii (c) && isgraph (c))
#else
#define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
#endif

#define ISPRINT(c) (isascii (c) && isprint (c))
#define ISDIGIT(c) (isascii (c) && isdigit (c))
#define ISALNUM(c) (isascii (c) && isalnum (c))
#define ISALPHA(c) (isascii (c) && isalpha (c))
#define ISCNTRL(c) (isascii (c) && iscntrl (c))
#define ISLOWER(c) (isascii (c) && islower (c))
#define ISPUNCT(c) (isascii (c) && ispunct (c))
#define ISSPACE(c) (isascii (c) && isspace (c))
#define ISUPPER(c) (isascii (c) && isupper (c))
#define ISXDIGIT(c) (isascii (c) && isxdigit (c))
Per Cederqvist's avatar
Per Cederqvist committed
157
158
159
160
161
162
163
164
165
166
167
168

#ifndef NULL
#define NULL 0
#endif

/* We remove any previous definition of `SIGN_EXTEND_CHAR',
   since ours (we hope) works properly with all combinations of
   machines, compilers, `char' and `unsigned char' argument types.
   (Per Bothner suggested the basic approach.)  */
#undef SIGN_EXTEND_CHAR
#if __STDC__
#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
169
#else  /* not __STDC__ */
Per Cederqvist's avatar
Per Cederqvist committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
/* As in Harbison and Steele.  */
#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
#endif

/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
   use `alloca' instead of `malloc'.  This is because using malloc in
   re_search* or re_match* could cause memory leaks when C-g is used in
   Emacs; also, malloc is slower and causes storage fragmentation.  On
   the other hand, malloc is more portable, and easier to debug.  
   
   Because we sometimes use alloca, some routines have to be macros,
   not functions -- `alloca'-allocated space disappears at the end of the
   function it is called in.  */

#ifdef REGEX_MALLOC

#define REGEX_ALLOCATE malloc
#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)

#else /* not REGEX_MALLOC  */

/* Emacs already defines alloca, sometimes.  */
#ifndef alloca

/* Make alloca work the best possible way.  */
#ifdef __GNUC__
#define alloca __builtin_alloca
#else /* not __GNUC__ */
#if HAVE_ALLOCA_H
#include <alloca.h>
#else /* not __GNUC__ or HAVE_ALLOCA_H */
#ifndef _AIX /* Already did AIX, up at the top.  */
char *alloca ();
#endif /* not _AIX */
#endif /* not HAVE_ALLOCA_H */ 
#endif /* not __GNUC__ */

#endif /* not alloca */

#define REGEX_ALLOCATE alloca

/* Assumes a `char *destination' variable.  */
#define REGEX_REALLOCATE(source, osize, nsize)				\
  (destination = (char *) alloca (nsize),				\
   bcopy (source, destination, osize),					\
   destination)

#endif /* not REGEX_MALLOC */


/* True if `size1' is non-NULL and PTR is pointing anywhere inside
   `string1' or just past its end.  This works if PTR is NULL, which is
   a good thing.  */
#define FIRST_STRING_P(ptr) 					\
  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)

/* (Re)Allocate N items of type T using malloc, or fail.  */
#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))

#define BYTEWIDTH 8 /* In bits.  */

#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))

#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))

typedef char boolean;
#define false 0
#define true 1

/* These are the command codes that appear in compiled regular
   expressions.  Some opcodes are followed by argument bytes.  A
   command code can specify any interpretation whatsoever for its
   arguments.  Zero bytes may appear in the compiled regular expression.

   The value of `exactn' is needed in search.c (search_buffer) in Emacs.
   So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
   `exactn' we use here must also be 1.  */

typedef enum
{
  no_op = 0,

        /* Followed by one byte giving n, then by n literal bytes.  */
  exactn = 1,

        /* Matches any (more or less) character.  */
  anychar,

        /* Matches any one char belonging to specified set.  First
           following byte is number of bitmap bytes.  Then come bytes
           for a bitmap saying which chars are in.  Bits in each byte
           are ordered low-bit-first.  A character is in the set if its
           bit is 1.  A character too large to have a bit in the map is
           automatically not in the set.  */
  charset,

        /* Same parameters as charset, but match any character that is
           not one of those specified.  */
  charset_not,

        /* Start remembering the text that is matched, for storing in a
           register.  Followed by one byte with the register number, in
           the range 0 to one less than the pattern buffer's re_nsub
           field.  Then followed by one byte with the number of groups
           inner to this one.  (This last has to be part of the
           start_memory only because we need it in the on_failure_jump
           of re_match_2.)  */
  start_memory,

        /* Stop remembering the text that is matched and store it in a
           memory register.  Followed by one byte with the register
           number, in the range 0 to one less than `re_nsub' in the
           pattern buffer, and one byte with the number of inner groups,
           just like `start_memory'.  (We need the number of inner
           groups here because we don't have any easy way of finding the
           corresponding start_memory when we're at a stop_memory.)  */
  stop_memory,

        /* Match a duplicate of something remembered. Followed by one
           byte containing the register number.  */
  duplicate,

        /* Fail unless at beginning of line.  */
  begline,

        /* Fail unless at end of line.  */
  endline,

        /* Succeeds if at beginning of buffer (if emacs) or at beginning
           of string to be matched (if not).  */
  begbuf,

        /* Analogously, for end of buffer/string.  */
  endbuf,
 
        /* Followed by two byte relative address to which to jump.  */
  jump, 

	/* Same as jump, but marks the end of an alternative.  */
  jump_past_alt,

        /* Followed by two-byte relative address of place to resume at
           in case of failure.  */
  on_failure_jump,
	
        /* Like on_failure_jump, but pushes a placeholder instead of the
           current string position when executed.  */
  on_failure_keep_string_jump,
  
        /* Throw away latest failure point and then jump to following
           two-byte relative address.  */
  pop_failure_jump,

        /* Change to pop_failure_jump if know won't have to backtrack to
           match; otherwise change to jump.  This is used to jump
           back to the beginning of a repeat.  If what follows this jump
           clearly won't match what the repeat does, such that we can be
           sure that there is no use backtracking out of repetitions
           already matched, then we change it to a pop_failure_jump.
           Followed by two-byte address.  */
  maybe_pop_jump,

        /* Jump to following two-byte address, and push a dummy failure
           point. This failure point will be thrown away if an attempt
           is made to use it for a failure.  A `+' construct makes this
           before the first repeat.  Also used as an intermediary kind
           of jump when compiling an alternative.  */
  dummy_failure_jump,

	/* Push a dummy failure point and continue.  Used at the end of
	   alternatives.  */
  push_dummy_failure,

        /* Followed by two-byte relative address and two-byte number n.
           After matching N times, jump to the address upon failure.  */
  succeed_n,

        /* Followed by two-byte relative address, and two-byte number n.
           Jump to the address N times, then fail.  */
  jump_n,

        /* Set the following two-byte relative address to the
           subsequent two-byte number.  The address *includes* the two
           bytes of number.  */
  set_number_at,

  wordchar,	/* Matches any word-constituent character.  */
  notwordchar,	/* Matches any char that is not a word-constituent.  */

  wordbeg,	/* Succeeds if at word beginning.  */
  wordend,	/* Succeeds if at word end.  */

  wordbound,	/* Succeeds if at a word boundary.  */
  notwordbound	/* Succeeds if not at a word boundary.  */

#ifdef emacs
  ,before_dot,	/* Succeeds if before point.  */
  at_dot,	/* Succeeds if at point.  */
  after_dot,	/* Succeeds if after point.  */

	/* Matches any character whose syntax is specified.  Followed by
           a byte which contains a syntax code, e.g., Sword.  */
  syntaxspec,

	/* Matches any character whose syntax is not that specified.  */
  notsyntaxspec
#endif /* emacs */
} re_opcode_t;

/* Common operations on the compiled pattern.  */

/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */

#define STORE_NUMBER(destination, number)				\
  do {									\
    (destination)[0] = (number) & 0377;					\
    (destination)[1] = (number) >> 8;					\
  } while (0)

/* Same as STORE_NUMBER, except increment DESTINATION to
   the byte after where the number is stored.  Therefore, DESTINATION
   must be an lvalue.  */

#define STORE_NUMBER_AND_INCR(destination, number)			\
  do {									\
    STORE_NUMBER (destination, number);					\
    (destination) += 2;							\
  } while (0)

/* Put into DESTINATION a number stored in two contiguous bytes starting
   at SOURCE.  */

#define EXTRACT_NUMBER(destination, source)				\
  do {									\
    (destination) = *(source) & 0377;					\
    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
  } while (0)

#ifdef DEBUG
static void
extract_number (dest, source)
    int *dest;
    unsigned char *source;
{
  int temp = SIGN_EXTEND_CHAR (*(source + 1)); 
  *dest = *source & 0377;
  *dest += temp << 8;
}

#ifndef EXTRACT_MACROS /* To debug the macros.  */
#undef EXTRACT_NUMBER
#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
#endif /* not EXTRACT_MACROS */

#endif /* DEBUG */

/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
   SOURCE must be an lvalue.  */

#define EXTRACT_NUMBER_AND_INCR(destination, source)			\
  do {									\
    EXTRACT_NUMBER (destination, source);				\
    (source) += 2; 							\
  } while (0)

#ifdef DEBUG
static void
extract_number_and_incr (destination, source)
    int *destination;
    unsigned char **source;
{ 
  extract_number (destination, *source);
  *source += 2;
}

#ifndef EXTRACT_MACROS
#undef EXTRACT_NUMBER_AND_INCR
#define EXTRACT_NUMBER_AND_INCR(dest, src) \
  extract_number_and_incr (&dest, &src)
#endif /* not EXTRACT_MACROS */

#endif /* DEBUG */

/* If DEBUG is defined, Regex prints many voluminous messages about what
   it is doing (if the variable `debug' is nonzero).  If linked with the
   main program in `iregex.c', you can enter patterns and strings
   interactively.  And if linked with the main program in `main.c' and
   the other test files, you can run the already-written tests.  */

#ifdef DEBUG

/* We use standard I/O for debugging.  */
#include <stdio.h>

/* It is useful to test things that ``must'' be true when debugging.  */
#include <assert.h>

static int debug = 0;

#define DEBUG_STATEMENT(e) e
#define DEBUG_PRINT1(x) if (debug) printf (x)
#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
476
#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
Per Cederqvist's avatar
Per Cederqvist committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 				\
  if (debug) print_partial_compiled_pattern (s, e)
#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)			\
  if (debug) print_double_string (w, s1, sz1, s2, sz2)


extern void printchar ();

/* Print the fastmap in human-readable form.  */

void
print_fastmap (fastmap)
    char *fastmap;
{
  unsigned was_a_range = 0;
  unsigned i = 0;  
  
  while (i < (1 << BYTEWIDTH))
    {
      if (fastmap[i++])
	{
	  was_a_range = 0;
          printchar (i - 1);
          while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
            {
              was_a_range = 1;
              i++;
            }
	  if (was_a_range)
            {
              printf ("-");
              printchar (i - 1);
            }
        }
    }
  putchar ('\n'); 
}


/* Print a compiled pattern string in human-readable form, starting at
   the START pointer into it and ending just before the pointer END.  */

void
print_partial_compiled_pattern (start, end)
    unsigned char *start;
    unsigned char *end;
{
  int mcnt, mcnt2;
  unsigned char *p = start;
  unsigned char *pend = end;

  if (start == NULL)
    {
      printf ("(null)\n");
      return;
    }
    
  /* Loop over pattern commands.  */
  while (p < pend)
    {
      switch ((re_opcode_t) *p++)
	{
        case no_op:
          printf ("/no_op");
          break;

	case exactn:
	  mcnt = *p++;
          printf ("/exactn/%d", mcnt);
          do
	    {
              putchar ('/');
	      printchar (*p++);
            }
          while (--mcnt);
          break;

	case start_memory:
          mcnt = *p++;
          printf ("/start_memory/%d/%d", mcnt, *p++);
          break;

	case stop_memory:
          mcnt = *p++;
	  printf ("/stop_memory/%d/%d", mcnt, *p++);
          break;

	case duplicate:
	  printf ("/duplicate/%d", *p++);
	  break;

	case anychar:
	  printf ("/anychar");
	  break;

	case charset:
        case charset_not:
          {
            register int c;

            printf ("/charset%s",
	            (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
            
            assert (p + *p < pend);

            for (c = 0; c < *p; c++)
              {
                unsigned bit;
                unsigned char map_byte = p[1 + c];
                
                putchar ('/');

		for (bit = 0; bit < BYTEWIDTH; bit++)
                  if (map_byte & (1 << bit))
                    printchar (c * BYTEWIDTH + bit);
              }
	    p += 1 + *p;
	    break;
	  }

	case begline:
	  printf ("/begline");
          break;

	case endline:
          printf ("/endline");
          break;

	case on_failure_jump:
          extract_number_and_incr (&mcnt, &p);
  	  printf ("/on_failure_jump/0/%d", mcnt);
          break;

	case on_failure_keep_string_jump:
          extract_number_and_incr (&mcnt, &p);
  	  printf ("/on_failure_keep_string_jump/0/%d", mcnt);
          break;

	case dummy_failure_jump:
          extract_number_and_incr (&mcnt, &p);
  	  printf ("/dummy_failure_jump/0/%d", mcnt);
          break;

	case push_dummy_failure:
          printf ("/push_dummy_failure");
          break;
          
        case maybe_pop_jump:
          extract_number_and_incr (&mcnt, &p);
  	  printf ("/maybe_pop_jump/0/%d", mcnt);
	  break;

        case pop_failure_jump:
	  extract_number_and_incr (&mcnt, &p);
  	  printf ("/pop_failure_jump/0/%d", mcnt);
	  break;          
          
        case jump_past_alt:
	  extract_number_and_incr (&mcnt, &p);
  	  printf ("/jump_past_alt/0/%d", mcnt);
	  break;          
          
        case jump:
	  extract_number_and_incr (&mcnt, &p);
  	  printf ("/jump/0/%d", mcnt);
	  break;

        case succeed_n: 
          extract_number_and_incr (&mcnt, &p);
          extract_number_and_incr (&mcnt2, &p);
 	  printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
          break;
        
        case jump_n: 
          extract_number_and_incr (&mcnt, &p);
          extract_number_and_incr (&mcnt2, &p);
 	  printf ("/jump_n/0/%d/0/%d", mcnt, mcnt2);
          break;
        
        case set_number_at: 
          extract_number_and_incr (&mcnt, &p);
          extract_number_and_incr (&mcnt2, &p);
 	  printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
          break;
        
        case wordbound:
	  printf ("/wordbound");
	  break;

	case notwordbound:
	  printf ("/notwordbound");
          break;

	case wordbeg:
	  printf ("/wordbeg");
	  break;
          
	case wordend:
	  printf ("/wordend");
          
#ifdef emacs
	case before_dot:
	  printf ("/before_dot");
          break;

	case at_dot:
	  printf ("/at_dot");
          break;

	case after_dot:
	  printf ("/after_dot");
          break;

	case syntaxspec:
          printf ("/syntaxspec");
	  mcnt = *p++;
	  printf ("/%d", mcnt);
          break;
	  
	case notsyntaxspec:
          printf ("/notsyntaxspec");
	  mcnt = *p++;
	  printf ("/%d", mcnt);
	  break;
#endif /* emacs */

	case wordchar:
	  printf ("/wordchar");
          break;
	  
	case notwordchar:
	  printf ("/notwordchar");
          break;

	case begbuf:
	  printf ("/begbuf");
          break;

	case endbuf:
	  printf ("/endbuf");
          break;

        default:
          printf ("?%d", *(p-1));
	}
    }
  printf ("/\n");
}


void
print_compiled_pattern (bufp)
    struct re_pattern_buffer *bufp;
{
  unsigned char *buffer = bufp->buffer;

  print_partial_compiled_pattern (buffer, buffer + bufp->used);
  printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);

  if (bufp->fastmap_accurate && bufp->fastmap)
    {
      printf ("fastmap: ");
      print_fastmap (bufp->fastmap);
    }

  printf ("re_nsub: %d\t", bufp->re_nsub);
  printf ("regs_alloc: %d\t", bufp->regs_allocated);
  printf ("can_be_null: %d\t", bufp->can_be_null);
  printf ("newline_anchor: %d\n", bufp->newline_anchor);
  printf ("no_sub: %d\t", bufp->no_sub);
  printf ("not_bol: %d\t", bufp->not_bol);
  printf ("not_eol: %d\t", bufp->not_eol);
  printf ("syntax: %d\n", bufp->syntax);
  /* Perhaps we should print the translate table?  */
}


void
print_double_string (where, string1, size1, string2, size2)
    const char *where;
    const char *string1;
    const char *string2;
    int size1;
    int size2;
{
  unsigned this_char;
  
  if (where == NULL)
    printf ("(null)");
  else
    {
      if (FIRST_STRING_P (where))
        {
          for (this_char = where - string1; this_char < size1; this_char++)
            printchar (string1[this_char]);

          where = string2;    
        }

      for (this_char = where - string2; this_char < size2; this_char++)
        printchar (string2[this_char]);
    }
}

#else /* not DEBUG */

#undef assert
#define assert(e)

#define DEBUG_STATEMENT(e)
#define DEBUG_PRINT1(x)
#define DEBUG_PRINT2(x1, x2)
#define DEBUG_PRINT3(x1, x2, x3)
790
#define DEBUG_PRINT4(x1, x2, x3, x4)
Per Cederqvist's avatar
Per Cederqvist committed
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)

#endif /* not DEBUG */

/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
   also be assigned to arbitrarily: each pattern buffer stores its own
   syntax, so it can be changed between regex compilations.  */
reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;


/* Specify the precise syntax of regexps for compilation.  This provides
   for compatibility for various utilities which historically have
   different, incompatible syntaxes.

   The argument SYNTAX is a bit mask comprised of the various bits
   defined in regex.h.  We return the old syntax.  */

reg_syntax_t
re_set_syntax (syntax)
    reg_syntax_t syntax;
{
  reg_syntax_t ret = re_syntax_options;
  
  re_syntax_options = syntax;
  return ret;
}

/* This table gives an error message for each of the error codes listed
   in regex.h.  Obviously the order here has to be same as there.  */

static const char *re_error_msg[] =
  { NULL,					/* REG_NOERROR */
    "No match",					/* REG_NOMATCH */
    "Invalid regular expression",		/* REG_BADPAT */
    "Invalid collation character",		/* REG_ECOLLATE */
    "Invalid character class name",		/* REG_ECTYPE */
    "Trailing backslash",			/* REG_EESCAPE */
    "Invalid back reference",			/* REG_ESUBREG */
    "Unmatched [ or [^",			/* REG_EBRACK */
    "Unmatched ( or \\(",			/* REG_EPAREN */
    "Unmatched \\{",				/* REG_EBRACE */
    "Invalid content of \\{\\}",		/* REG_BADBR */
    "Invalid range end",			/* REG_ERANGE */
    "Memory exhausted",				/* REG_ESPACE */
    "Invalid preceding regular expression",	/* REG_BADRPT */
    "Premature end of regular expression",	/* REG_EEND */
    "Regular expression too big",		/* REG_ESIZE */
    "Unmatched ) or \\)",			/* REG_ERPAREN */
  };

/* Subroutine declarations and macros for regex_compile.  */

static void store_op1 (), store_op2 ();
static void insert_op1 (), insert_op2 ();
static boolean at_begline_loc_p (), at_endline_loc_p ();
static boolean group_in_compile_stack ();
static reg_errcode_t compile_range ();

/* Fetch the next character in the uncompiled pattern---translating it 
   if necessary.  Also cast from a signed character in the constant
   string passed to us by the user to an unsigned char that we can use
   as an array index (in, e.g., `translate').  */
#define PATFETCH(c)							\
  do {if (p == pend) return REG_EEND;					\
    c = (unsigned char) *p++;						\
    if (translate) c = translate[c]; 					\
  } while (0)

/* Fetch the next character in the uncompiled pattern, with no
   translation.  */
#define PATFETCH_RAW(c)							\
  do {if (p == pend) return REG_EEND;					\
    c = (unsigned char) *p++; 						\
  } while (0)

/* Go backwards one character in the pattern.  */
#define PATUNFETCH p--


/* If `translate' is non-null, return translate[D], else just D.  We
   cast the subscript to translate because some data is declared as
   `char *', to avoid warnings when a string constant is passed.  But
   when we use a character as a subscript we must make it unsigned.  */
#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))


/* Macros for outputting the compiled pattern into `buffer'.  */

/* If the buffer isn't allocated when it comes in, use this.  */
#define INIT_BUF_SIZE  32

/* Make sure we have at least N more bytes of space in buffer.  */
#define GET_BUFFER_SPACE(n)						\
    while (b - bufp->buffer + (n) > bufp->allocated)			\
      EXTEND_BUFFER ()

/* Make sure we have one more byte of buffer space and then add C to it.  */
#define BUF_PUSH(c)							\
  do {									\
    GET_BUFFER_SPACE (1);						\
    *b++ = (unsigned char) (c);						\
  } while (0)


/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
#define BUF_PUSH_2(c1, c2)						\
  do {									\
    GET_BUFFER_SPACE (2);						\
    *b++ = (unsigned char) (c1);					\
    *b++ = (unsigned char) (c2);					\
  } while (0)


/* As with BUF_PUSH_2, except for three bytes.  */
#define BUF_PUSH_3(c1, c2, c3)						\
  do {									\
    GET_BUFFER_SPACE (3);						\
    *b++ = (unsigned char) (c1);					\
    *b++ = (unsigned char) (c2);					\
    *b++ = (unsigned char) (c3);					\
  } while (0)


/* Store a jump with opcode OP at LOC to location TO.  We store a
   relative address offset by the three bytes the jump itself occupies.  */
#define STORE_JUMP(op, loc, to) \
  store_op1 (op, loc, (to) - (loc) - 3)

/* Likewise, for a two-argument jump.  */
#define STORE_JUMP2(op, loc, to, arg) \
  store_op2 (op, loc, (to) - (loc) - 3, arg)

/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
#define INSERT_JUMP(op, loc, to) \
  insert_op1 (op, loc, (to) - (loc) - 3, b)

/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
#define INSERT_JUMP2(op, loc, to, arg) \
  insert_op2 (op, loc, (to) - (loc) - 3, arg, b)


/* This is not an arbitrary limit: the arguments which represent offsets
   into the pattern are two bytes long.  So if 2^16 bytes turns out to
   be too small, many things would have to change.  */
#define MAX_BUF_SIZE (1L << 16)


/* Extend the buffer by twice its current size via realloc and
   reset the pointers that pointed into the old block to point to the
   correct places in the new one.  If extending the buffer results in it
   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
#define EXTEND_BUFFER()							\
  do { 									\
    unsigned char *old_buffer = bufp->buffer;				\
    if (bufp->allocated == MAX_BUF_SIZE) 				\
      return REG_ESIZE;							\
    bufp->allocated <<= 1;						\
    if (bufp->allocated > MAX_BUF_SIZE)					\
      bufp->allocated = MAX_BUF_SIZE; 					\
    bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
    if (bufp->buffer == NULL)						\
      return REG_ESPACE;						\
    /* If the buffer moved, move all the pointers into it.  */		\
    if (old_buffer != bufp->buffer)					\
      {									\
        b = (b - old_buffer) + bufp->buffer;				\
        begalt = (begalt - old_buffer) + bufp->buffer;			\
        if (fixup_alt_jump)						\
          fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
        if (laststart)							\
          laststart = (laststart - old_buffer) + bufp->buffer;		\
        if (pending_exact)						\
          pending_exact = (pending_exact - old_buffer) + bufp->buffer;	\
      }									\
  } while (0)


/* Since we have one byte reserved for the register number argument to
   {start,stop}_memory, the maximum number of groups we can report
   things about is what fits in that byte.  */
#define MAX_REGNUM 255

/* But patterns can have more than `MAX_REGNUM' registers.  We just
   ignore the excess.  */
typedef unsigned regnum_t;


/* Macros for the compile stack.  */

/* Since offsets can go either forwards or backwards, this type needs to
   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
typedef int pattern_offset_t;

typedef struct
{
  pattern_offset_t begalt_offset;
  pattern_offset_t fixup_alt_jump;
  pattern_offset_t inner_group_offset;
  pattern_offset_t laststart_offset;  
  regnum_t regnum;
} compile_stack_elt_t;


typedef struct
{
  compile_stack_elt_t *stack;
  unsigned size;
  unsigned avail;			/* Offset of next open position.  */
} compile_stack_type;


#define INIT_COMPILE_STACK_SIZE 32

#define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
#define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)

/* The next available element.  */
#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])


/* Set the bit for character C in a list.  */
#define SET_LIST_BIT(c)                               \
  (b[((unsigned char) (c)) / BYTEWIDTH]               \
   |= 1 << (((unsigned char) c) % BYTEWIDTH))


/* Get the next unsigned number in the uncompiled pattern.  */
#define GET_UNSIGNED_NUMBER(num) 					\
  { if (p != pend)							\
     {									\
       PATFETCH (c); 							\
1023
       while (ISDIGIT (c)) 						\
Per Cederqvist's avatar
Per Cederqvist committed
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
         { 								\
           if (num < 0)							\
              num = 0;							\
           num = num * 10 + c - '0'; 					\
           if (p == pend) 						\
              break; 							\
           PATFETCH (c);						\
         } 								\
       } 								\
    }		

#define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */

#define IS_CHAR_CLASS(string)						\
   (STREQ (string, "alpha") || STREQ (string, "upper")			\
    || STREQ (string, "lower") || STREQ (string, "digit")		\
    || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
    || STREQ (string, "space") || STREQ (string, "print")		\
    || STREQ (string, "punct") || STREQ (string, "graph")		\
    || STREQ (string, "cntrl") || STREQ (string, "blank"))

/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
   Returns one of error codes defined in `regex.h', or zero for success.

   Assumes the `allocated' (and perhaps `buffer') and `translate'
   fields are set in BUFP on entry.

   If it succeeds, results are put in BUFP (if it returns an error, the
   contents of BUFP are undefined):
     `buffer' is the compiled pattern;
     `syntax' is set to SYNTAX;
     `used' is set to the length of the compiled pattern;
1056
1057
1058
     `fastmap_accurate' is zero;
     `re_nsub' is the number of subexpressions in PATTERN;
     `not_bol' and `not_eol' are zero;
Per Cederqvist's avatar
Per Cederqvist committed
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
   
   The `fastmap' and `newline_anchor' fields are neither
   examined nor set.  */

static reg_errcode_t
regex_compile (pattern, size, syntax, bufp)
     const char *pattern;
     int size;
     reg_syntax_t syntax;
     struct re_pattern_buffer *bufp;
{
  /* We fetch characters from PATTERN here.  Even though PATTERN is
     `char *' (i.e., signed), we declare these variables as unsigned, so
     they can be reliably used as array indices.  */
  register unsigned char c, c1;
  
  /* A random tempory spot in PATTERN.  */
  const char *p1;

  /* Points to the end of the buffer, where we should append.  */
  register unsigned char *b;
  
  /* Keeps track of unclosed groups.  */
  compile_stack_type compile_stack;

  /* Points to the current (ending) position in the pattern.  */
  const char *p = pattern;
  const char *pend = pattern + size;
  
  /* How to translate the characters in the pattern.  */
  char *translate = bufp->translate;

  /* Address of the count-byte of the most recently inserted `exactn'
     command.  This makes it possible to tell if a new exact-match
     character can be added to that command or if the character requires
     a new `exactn' command.  */
  unsigned char *pending_exact = 0;

  /* Address of start of the most recently finished expression.
     This tells, e.g., postfix * where to find the start of its
     operand.  Reset at the beginning of groups and alternatives.  */
  unsigned char *laststart = 0;

  /* Address of beginning of regexp, or inside of last group.  */
  unsigned char *begalt;

  /* Place in the uncompiled pattern (i.e., the {) to
     which to go back if the interval is invalid.  */
  const char *beg_interval;
                
  /* Address of the place where a forward jump should go to the end of
     the containing expression.  Each alternative of an `or' -- except the
     last -- ends with a forward jump of this sort.  */
  unsigned char *fixup_alt_jump = 0;

  /* Counts open-groups as they are encountered.  Remembered for the
     matching close-group on the compile stack, so the same register
     number is put in the stop_memory as the start_memory.  */
  regnum_t regnum = 0;

#ifdef DEBUG
  DEBUG_PRINT1 ("\nCompiling pattern: ");
  if (debug)
    {
      unsigned debug_count;
      
      for (debug_count = 0; debug_count < size; debug_count++)
        printchar (pattern[debug_count]);
      putchar ('\n');
    }
#endif /* DEBUG */

  /* Initialize the compile stack.  */
  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
  if (compile_stack.stack == NULL)
    return REG_ESPACE;

  compile_stack.size = INIT_COMPILE_STACK_SIZE;
  compile_stack.avail = 0;

  /* Initialize the pattern buffer.  */
  bufp->syntax = syntax;
  bufp->fastmap_accurate = 0;
  bufp->not_bol = bufp->not_eol = 0;

  /* Set `used' to zero, so that if we return an error, the pattern
     printer (for debugging) will think there's no pattern.  We reset it
     at the end.  */
  bufp->used = 0;
  
  /* Always count groups, whether or not bufp->no_sub is set.  */
  bufp->re_nsub = 0;				

#if !defined (emacs) && !defined (SYNTAX_TABLE)
  /* Initialize the syntax table.  */
   init_syntax_once ();
#endif

  if (bufp->allocated == 0)
    {
      if (bufp->buffer)
	{ /* If zero allocated, but buffer is non-null, try to realloc
             enough space.  This loses if buffer's address is bogus, but
             that is the user's responsibility.  */
          RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
        }
      else
        { /* Caller did not allocate a buffer.  Do it for them.  */
          bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
        }
      if (!bufp->buffer) return REG_ESPACE;

      bufp->allocated = INIT_BUF_SIZE;
    }

  begalt = b = bufp->buffer;

  /* Loop through the uncompiled pattern until we're at the end.  */
  while (p != pend)
    {
      PATFETCH (c);

      switch (c)
        {
        case '^':
          {
            if (   /* If at start of pattern, it's an operator.  */
                   p == pattern + 1
                   /* If context independent, it's an operator.  */
                || syntax & RE_CONTEXT_INDEP_ANCHORS
                   /* Otherwise, depends on what's come before.  */
                || at_begline_loc_p (pattern, p, syntax))
              BUF_PUSH (begline);
            else
              goto normal_char;
          }
          break;


        case '$':
          {
            if (   /* If at end of pattern, it's an operator.  */
                   p == pend 
                   /* If context independent, it's an operator.  */
                || syntax & RE_CONTEXT_INDEP_ANCHORS
                   /* Otherwise, depends on what's next.  */
                || at_endline_loc_p (p, pend, syntax))
               BUF_PUSH (endline);
             else
               goto normal_char;
           }
           break;


	case '+':
        case '?':
          if ((syntax & RE_BK_PLUS_QM)
              || (syntax & RE_LIMITED_OPS))
            goto normal_char;
        handle_plus:
        case '*':
          /* If there is no previous pattern... */
          if (!laststart)
            {
              if (syntax & RE_CONTEXT_INVALID_OPS)
                return REG_BADRPT;
              else if (!(syntax & RE_CONTEXT_INDEP_OPS))
                goto normal_char;
            }

          {
            /* Are we optimizing this jump?  */
            boolean keep_string_p = false;
            
            /* 1 means zero (many) matches is allowed.  */
            char zero_times_ok = 0, many_times_ok = 0;

            /* If there is a sequence of repetition chars, collapse it
               down to just one (the right one).  We can't combine
               interval operators with these because of, e.g., `a{2}*',
               which should only match an even number of `a's.  */

            for (;;)
              {
                zero_times_ok |= c != '+';
                many_times_ok |= c != '?';

                if (p == pend)
                  break;

                PATFETCH (c);

                if (c == '*'
                    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
                  ;

                else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
                  {
                    if (p == pend) return REG_EESCAPE;

                    PATFETCH (c1);
                    if (!(c1 == '+' || c1 == '?'))
                      {
                        PATUNFETCH;
                        PATUNFETCH;
                        break;
                      }

                    c = c1;
                  }
                else
                  {
                    PATUNFETCH;
                    break;
                  }

                /* If we get here, we found another repeat character.  */
               }

            /* Star, etc. applied to an empty pattern is equivalent
               to an empty pattern.  */
            if (!laststart)  
              break;

            /* Now we know whether or not zero matches is allowed
               and also whether or not two or more matches is allowed.  */
            if (many_times_ok)
              { /* More than one repetition is allowed, so put in at the
                   end a backward relative jump from `b' to before the next
                   jump we're going to put in below (which jumps from
                   laststart to after this jump).  

                   But if we are at the `*' in the exact sequence `.*\n',
                   insert an unconditional jump backwards to the .,
                   instead of the beginning of the loop.  This way we only
                   push a failure point once, instead of every time
                   through the loop.  */
                assert (p - 1 > pattern);

                /* Allocate the space for the jump.  */
                GET_BUFFER_SPACE (3);

                /* We know we are not at the first character of the pattern,
                   because laststart was nonzero.  And we've already
                   incremented `p', by the way, to be the character after
                   the `*'.  Do we have to do something analogous here
                   for null bytes, because of RE_DOT_NOT_NULL?  */
                if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1307
		    && zero_times_ok
Per Cederqvist's avatar
Per Cederqvist committed
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
                    && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
                    && !(syntax & RE_DOT_NEWLINE))
                  { /* We have .*\n.  */
                    STORE_JUMP (jump, b, laststart);
                    keep_string_p = true;
                  }
                else
                  /* Anything else.  */
                  STORE_JUMP (maybe_pop_jump, b, laststart - 3);

                /* We've added more stuff to the buffer.  */
                b += 3;
              }

            /* On failure, jump from laststart to b + 3, which will be the
               end of the buffer after this jump is inserted.  */
            GET_BUFFER_SPACE (3);
            INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
                                       : on_failure_jump,
                         laststart, b + 3);
            pending_exact = 0;
            b += 3;

            if (!zero_times_ok)
              {
                /* At least one repetition is required, so insert a
                   `dummy_failure_jump' before the initial
                   `on_failure_jump' instruction of the loop. This
                   effects a skip over that instruction the first time
                   we hit that loop.  */
                GET_BUFFER_SPACE (3);
                INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
                b += 3;
              }
            }
	  break;


	case '.':
          laststart = b;
          BUF_PUSH (anychar);
          break;


        case '[':
          {
            boolean had_char_class = false;

            if (p == pend) return REG_EBRACK;

            /* Ensure that we have enough space to push a charset: the
               opcode, the length count, and the bitset; 34 bytes in all.  */
	    GET_BUFFER_SPACE (34);

            laststart = b;

            /* We test `*p == '^' twice, instead of using an if
               statement, so we only need one BUF_PUSH.  */
            BUF_PUSH (*p == '^' ? charset_not : charset); 
            if (*p == '^')
              p++;

            /* Remember the first position in the bracket expression.  */
            p1 = p;

            /* Push the number of bytes in the bitmap.  */
            BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);

            /* Clear the whole map.  */
            bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);

            /* charset_not matches newline according to a syntax bit.  */
            if ((re_opcode_t) b[-2] == charset_not
                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
              SET_LIST_BIT ('\n');

            /* Read in characters and ranges, setting map bits.  */
            for (;;)
              {
                if (p == pend) return REG_EBRACK;

                PATFETCH (c);

                /* \ might escape characters inside [...] and [^...].  */
                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
                  {
                    if (p == pend) return REG_EESCAPE;

                    PATFETCH (c1);
                    SET_LIST_BIT (c1);
                    continue;
                  }

                /* Could be the end of the bracket expression.  If it's
                   not (i.e., when the bracket expression is `[]' so
                   far), the ']' character bit gets set way below.  */
                if (c == ']' && p != p1 + 1)
                  break;

                /* Look ahead to see if it's a range when the last thing
                   was a character class.  */
                if (had_char_class && c == '-' && *p != ']')
                  return REG_ERANGE;

                /* Look ahead to see if it's a range when the last thing
                   was a character: if this is a hyphen not at the
                   beginning or the end of a list, then it's the range
                   operator.  */
                if (c == '-' 
                    && !(p - 2 >= pattern && p[-2] == '[') 
                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
                    && *p != ']')
                  {
                    reg_errcode_t ret
                      = compile_range (&p, pend, translate, syntax, b);
                    if (ret != REG_NOERROR) return ret;
                  }

                else if (p[0] == '-' && p[1] != ']')
                  { /* This handles ranges made up of characters only.  */
                    reg_errcode_t ret;

		    /* Move past the `-'.  */
                    PATFETCH (c1);
                    
                    ret = compile_range (&p, pend, translate, syntax, b);
                    if (ret != REG_NOERROR) return ret;
                  }

                /* See if we're at the beginning of a possible character
                   class.  */

                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
                  { /* Leave room for the null.  */
                    char str[CHAR_CLASS_MAX_LENGTH + 1];

                    PATFETCH (c);
                    c1 = 0;

                    /* If pattern is `[[:'.  */
                    if (p == pend) return REG_EBRACK;

                    for (;;)
                      {
                        PATFETCH (c);
                        if (c == ':' || c == ']' || p == pend
                            || c1 == CHAR_CLASS_MAX_LENGTH)
                          break;
                        str[c1++] = c;
                      }
                    str[c1] = '\0';

                    /* If isn't a word bracketed by `[:' and:`]':
                       undo the ending character, the letters, and leave 
                       the leading `:' and `[' (but set bits for them).  */
                    if (c == ':' && *p == ']')
                      {
                        int ch;
                        boolean is_alnum = STREQ (str, "alnum");
                        boolean is_alpha = STREQ (str, "alpha");
                        boolean is_blank = STREQ (str, "blank");
                        boolean is_cntrl = STREQ (str, "cntrl");
                        boolean is_digit = STREQ (str, "digit");
                        boolean is_graph = STREQ (str, "graph");
                        boolean is_lower = STREQ (str, "lower");
                        boolean is_print = STREQ (str, "print");
                        boolean is_punct = STREQ (str, "punct");
                        boolean is_space = STREQ (str, "space");
                        boolean is_upper = STREQ (str, "upper");
                        boolean is_xdigit = STREQ (str, "xdigit");
                        
                        if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;

                        /* Throw away the ] at the end of the character
                           class.  */
                        PATFETCH (c);					

                        if (p == pend) return REG_EBRACK;

                        for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
                          {
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
                            if (   (is_alnum  && ISALNUM (ch))
                                || (is_alpha  && ISALPHA (ch))
                                || (is_blank  && ISBLANK (ch))
                                || (is_cntrl  && ISCNTRL (ch))
                                || (is_digit  && ISDIGIT (ch))
                                || (is_graph  && ISGRAPH (ch))
                                || (is_lower  && ISLOWER (ch))
                                || (is_print  && ISPRINT (ch))
                                || (is_punct  && ISPUNCT (ch))
                                || (is_space  && ISSPACE (ch))
                                || (is_upper  && ISUPPER (ch))
                                || (is_xdigit && ISXDIGIT (ch)))
Per Cederqvist's avatar
Per Cederqvist committed
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
                            SET_LIST_BIT (ch);
                          }
                        had_char_class = true;
                      }
                    else
                      {
                        c1++;
                        while (c1--)    
                          PATUNFETCH;
                        SET_LIST_BIT ('[');
                        SET_LIST_BIT (':');
                        had_char_class = false;
                      }
                  }
                else
                  {
                    had_char_class = false;
                    SET_LIST_BIT (c);
                  }
              }

            /* Discard any (non)matching list bytes that are all 0 at the
               end of the map.  Decrease the map-length byte too.  */
            while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) 
              b[-1]--; 
            b += b[-1];
          }
          break;


	case '(':
          if (syntax & RE_NO_BK_PARENS)
            goto handle_open;
          else
            goto normal_char;


        case ')':
          if (syntax & RE_NO_BK_PARENS)
            goto handle_close;
          else
            goto normal_char;


        case '\n':
          if (syntax & RE_NEWLINE_ALT)
            goto handle_alt;
          else
            goto normal_char;


	case '|':
          if (syntax & RE_NO_BK_VBAR)
            goto handle_alt;
          else
            goto normal_char;


        case '{':
           if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
             goto handle_interval;
           else
             goto normal_char;


        case '\\':
          if (p == pend) return REG_EESCAPE;

          /* Do not translate the character after the \, so that we can
             distinguish, e.g., \B from \b, even if we normally would
             translate, e.g., B to b.  */
          PATFETCH_RAW (c);

          switch (c)
            {
            case '(':
              if (syntax & RE_NO_BK_PARENS)
                goto normal_backslash;

            handle_open:
              bufp->re_nsub++;
              regnum++;

              if (COMPILE_STACK_FULL)
                { 
                  RETALLOC (compile_stack.stack, compile_stack.size << 1,
                            compile_stack_elt_t);
                  if (compile_stack.stack == NULL) return REG_ESPACE;

                  compile_stack.size <<= 1;
                }

              /* These are the values to restore when we hit end of this
                 group.  They are all relative offsets, so that if the
                 whole pattern moves because of realloc, they will still
                 be valid.  */
              COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
              COMPILE_STACK_TOP.fixup_alt_jump 
                = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
              COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
              COMPILE_STACK_TOP.regnum = regnum;

              /* We will eventually replace the 0 with the number of
                 groups inner to this one.  But do not push a
                 start_memory for groups beyond the last one we can
                 represent in the compiled pattern.  */
              if (regnum <= MAX_REGNUM)
                {
                  COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
                  BUF_PUSH_3 (start_memory, regnum, 0);
                }
                
              compile_stack.avail++;

              fixup_alt_jump = 0;
              laststart = 0;
              begalt = b;
1618
1619
1620
1621
	      /* If we've reached MAX_REGNUM groups, then this open
		 won't actually generate any code, so we'll have to
		 clear pending_exact explicitly.  */
	      pending_exact = 0;
Per Cederqvist's avatar
Per Cederqvist committed
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
              break;


            case ')':
              if (syntax & RE_NO_BK_PARENS) goto normal_backslash;

              if (COMPILE_STACK_EMPTY)
                if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
                  goto normal_backslash;
                else
                  return REG_ERPAREN;

            handle_close:
              if (fixup_alt_jump)
                { /* Push a dummy failure point at the end of the
                     alternative for a possible future
                     `pop_failure_jump' to pop.  See comments at
                     `push_dummy_failure' in `re_match_2'.  */
                  BUF_PUSH (push_dummy_failure);
                  
                  /* We allocated space for this jump when we assigned
                     to `fixup_alt_jump', in the `handle_alt' case below.  */
                  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
                }

              /* See similar code for backslashed left paren above.  */
              if (COMPILE_STACK_EMPTY)
                if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
                  goto normal_char;
                else
                  return REG_ERPAREN;

              /* Since we just checked for an empty stack above, this
                 ``can't happen''.  */
              assert (compile_stack.avail != 0);
              {
                /* We don't just want to restore into `regnum', because
                   later groups should continue to be numbered higher,
                   as in `(ab)c(de)' -- the second group is #2.  */
                regnum_t this_group_regnum;

                compile_stack.avail--;		
                begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
                fixup_alt_jump
                  = COMPILE_STACK_TOP.fixup_alt_jump
                    ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 
                    : 0;
                laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
                this_group_regnum = COMPILE_STACK_TOP.regnum;
1671
1672
1673
1674
		/* If we've reached MAX_REGNUM groups, then this open
		   won't actually generate any code, so we'll have to
		   clear pending_exact explicitly.  */
		pending_exact = 0;
Per Cederqvist's avatar
Per Cederqvist committed
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

                /* We're at the end of the group, so now we know how many
                   groups were inside this one.  */
                if (this_group_regnum <= MAX_REGNUM)
                  {
                    unsigned char *inner_group_loc
                      = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
                    
                    *inner_group_loc = regnum - this_group_regnum;
                    BUF_PUSH_3 (stop_memory, this_group_regnum,
                                regnum - this_group_regnum);
                  }
              }
              break;


            case '|':					/* `\|'.  */
              if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
                goto normal_backslash;
            handle_alt:
              if (syntax & RE_LIMITED_OPS)
                goto normal_char;

              /* Insert before the previous alternative a jump which
                 jumps to this alternative if the former fails.  */
              GET_BUFFER_SPACE (3);
              INSERT_JUMP (on_failure_jump, begalt, b + 6);
              pending_exact = 0;
              b += 3;

              /* The alternative before this one has a jump after it
                 which gets executed if it gets matched.  Adjust that
                 jump so it will jump to this alternative's analogous
                 jump (put in below, which in turn will jump to the next
                 (if any) alternative's such jump, etc.).  The last such
                 jump jumps to the correct final destination.  A picture:
                          _____ _____ 
                          |   | |   |   
                          |   v |   v 
                         a | b   | c   

1716
1717
1718
1719
                 If we are at `b', then fixup_alt_jump right now points to a
                 three-byte space after `a'.  We'll put in the jump, set
                 fixup_alt_jump to right after `b', and leave behind three
                 bytes which we'll fill in when we get to after `c'.  */
Per Cederqvist's avatar
Per Cederqvist committed
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210

              if (fixup_alt_jump)
                STORE_JUMP (jump_past_alt, fixup_alt_jump, b);

              /* Mark and leave space for a jump after this alternative,
                 to be filled in later either by next alternative or
                 when know we're at the end of a series of alternatives.  */
              fixup_alt_jump = b;
              GET_BUFFER_SPACE (3);
              b += 3;

              laststart = 0;
              begalt = b;
              break;


            case '{': 
              /* If \{ is a literal.  */
              if (!(syntax & RE_INTERVALS)
                     /* If we're at `\{' and it's not the open-interval 
                        operator.  */
                  || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
                  || (p - 2 == pattern  &&  p == pend))
                goto normal_backslash;

            handle_interval:
              {
                /* If got here, then the syntax allows intervals.  */

                /* At least (most) this many matches must be made.  */
                int lower_bound = -1, upper_bound = -1;

                beg_interval = p - 1;

                if (p == pend)
                  {
                    if (syntax & RE_NO_BK_BRACES)
                      goto unfetch_interval;
                    else
                      return REG_EBRACE;
                  }

                GET_UNSIGNED_NUMBER (lower_bound);

                if (c == ',')
                  {
                    GET_UNSIGNED_NUMBER (upper_bound);
                    if (upper_bound < 0) upper_bound = RE_DUP_MAX;
                  }
                else
                  /* Interval such as `{1}' => match exactly once. */
                  upper_bound = lower_bound;

                if (lower_bound < 0 || upper_bound > RE_DUP_MAX
                    || lower_bound > upper_bound)
                  {
                    if (syntax & RE_NO_BK_BRACES)
                      goto unfetch_interval;
                    else 
                      return REG_BADBR;
                  }

                if (!(syntax & RE_NO_BK_BRACES)) 
                  {
                    if (c != '\\') return REG_EBRACE;

                    PATFETCH (c);
                  }

                if (c != '}')
                  {
                    if (syntax & RE_NO_BK_BRACES)
                      goto unfetch_interval;
                    else 
                      return REG_BADBR;
                  }

                /* We just parsed a valid interval.  */

                /* If it's invalid to have no preceding re.  */
                if (!laststart)
                  {
                    if (syntax & RE_CONTEXT_INVALID_OPS)
                      return REG_BADRPT;
                    else if (syntax & RE_CONTEXT_INDEP_OPS)
                      laststart = b;
                    else
                      goto unfetch_interval;
                  }

                /* If the upper bound is zero, don't want to succeed at
                   all; jump from `laststart' to `b + 3', which will be
                   the end of the buffer after we insert the jump.  */
                 if (upper_bound == 0)
                   {
                     GET_BUFFER_SPACE (3);
                     INSERT_JUMP (jump, laststart, b + 3);
                     b += 3;
                   }

                 /* Otherwise, we have a nontrivial interval.  When
                    we're all done, the pattern will look like:
                      set_number_at <jump count> <upper bound>
                      set_number_at <succeed_n count> <lower bound>
                      succeed_n <after jump addr> <succed_n count>
                      <body of loop>
                      jump_n <succeed_n addr> <jump count>
                    (The upper bound and `jump_n' are omitted if
                    `upper_bound' is 1, though.)  */
                 else 
                   { /* If the upper bound is > 1, we need to insert
                        more at the end of the loop.  */
                     unsigned nbytes = 10 + (upper_bound > 1) * 10;

                     GET_BUFFER_SPACE (nbytes);

                     /* Initialize lower bound of the `succeed_n', even
                        though it will be set during matching by its
                        attendant `set_number_at' (inserted next),
                        because `re_compile_fastmap' needs to know.
                        Jump to the `jump_n' we might insert below.  */
                     INSERT_JUMP2 (succeed_n, laststart,
                                   b + 5 + (upper_bound > 1) * 5,
                                   lower_bound);
                     b += 5;

                     /* Code to initialize the lower bound.  Insert 
                        before the `succeed_n'.  The `5' is the last two
                        bytes of this `set_number_at', plus 3 bytes of
                        the following `succeed_n'.  */
                     insert_op2 (set_number_at, laststart, 5, lower_bound, b);
                     b += 5;

                     if (upper_bound > 1)
                       { /* More than one repetition is allowed, so
                            append a backward jump to the `succeed_n'
                            that starts this interval.
                            
                            When we've reached this during matching,
                            we'll have matched the interval once, so
                            jump back only `upper_bound - 1' times.  */
                         STORE_JUMP2 (jump_n, b, laststart + 5,
                                      upper_bound - 1);
                         b += 5;

                         /* The location we want to set is the second
                            parameter of the `jump_n'; that is `b-2' as
                            an absolute address.  `laststart' will be
                            the `set_number_at' we're about to insert;
                            `laststart+3' the number to set, the source
                            for the relative address.  But we are
                            inserting into the middle of the pattern --
                            so everything is getting moved up by 5.
                            Conclusion: (b - 2) - (laststart + 3) + 5,
                            i.e., b - laststart.
                            
                            We insert this at the beginning of the loop
                            so that if we fail during matching, we'll
                            reinitialize the bounds.  */
                         insert_op2 (set_number_at, laststart, b - laststart,
                                     upper_bound - 1, b);
                         b += 5;
                       }
                   }
                pending_exact = 0;
                beg_interval = NULL;
              }
              break;

            unfetch_interval:
              /* If an invalid interval, match the characters as literals.  */
               assert (beg_interval);
               p = beg_interval;
               beg_interval = NULL;

               /* normal_char and normal_backslash need `c'.  */
               PATFETCH (c);	

               if (!(syntax & RE_NO_BK_BRACES))
                 {
                   if (p > pattern  &&  p[-1] == '\\')
                     goto normal_backslash;
                 }
               goto normal_char;

#ifdef emacs
            /* There is no way to specify the before_dot and after_dot
               operators.  rms says this is ok.  --karl  */
            case '=':
              BUF_PUSH (at_dot);
              break;

            case 's':	
              laststart = b;
              PATFETCH (c);
              BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
              break;

            case 'S':
              laststart = b;
              PATFETCH (c);
              BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
              break;
#endif /* emacs */


            case 'w':
              laststart = b;
              BUF_PUSH (wordchar);
              break;


            case 'W':
              laststart = b;
              BUF_PUSH (notwordchar);
              break;


            case '<':
              BUF_PUSH (wordbeg);
              break;

            case '>':
              BUF_PUSH (wordend);
              break;

            case 'b':
              BUF_PUSH (wordbound);
              break;

            case 'B':
              BUF_PUSH (notwordbound);
              break;

            case '`':
              BUF_PUSH (begbuf);
              break;

            case '\'':
              BUF_PUSH (endbuf);
              break;

            case '1': case '2': case '3': case '4': case '5':
            case '6': case '7': case '8': case '9':
              if (syntax & RE_NO_BK_REFS)
                goto normal_char;

              c1 = c - '0';

              if (c1 > regnum)
                return REG_ESUBREG;

              /* Can't back reference to a subexpression if inside of it.  */
              if (group_in_compile_stack (compile_stack, c1))
                goto normal_char;

              laststart = b;
              BUF_PUSH_2 (duplicate, c1);
              break;


            case '+':
            case '?':
              if (syntax & RE_BK_PLUS_QM)
                goto handle_plus;
              else
                goto normal_backslash;

            default:
            normal_backslash:
              /* You might think it would be useful for \ to mean
                 not to translate; but if we don't translate it
                 it will never match anything.  */
              c = TRANSLATE (c);
              goto normal_char;
            }
          break;


	default:
        /* Expects the character in `c'.  */
	normal_char:
	      /* If no exactn currently being built.  */
          if (!pending_exact 

              /* If last exactn not at current position.  */
              || pending_exact + *pending_exact + 1 != b
              
              /* We have only one byte following the exactn for the count.  */
	      || *pending_exact == (1 << BYTEWIDTH) - 1

              /* If followed by a repetition operator.  */
              || *p == '*' || *p == '^'
	      || ((syntax & RE_BK_PLUS_QM)
		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
		  : (*p == '+' || *p == '?'))
	      || ((syntax & RE_INTERVALS)
                  && ((syntax & RE_NO_BK_BRACES)
		      ? *p == '{'
                      : (p[0] == '\\' && p[1] == '{'))))
	    {
	      /* Start building a new exactn.  */
              
              laststart = b;

	      BUF_PUSH_2 (exactn, 0);
	      pending_exact = b - 1;
            }
            
	  BUF_PUSH (c);
          (*pending_exact)++;
	  break;
        } /* switch (c) */
    } /* while p != pend */

  
  /* Through the pattern now.  */
  
  if (fixup_alt_jump)
    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);

  if (!COMPILE_STACK_EMPTY) 
    return REG_EPAREN;

  free (compile_stack.stack);

  /* We have succeeded; set the length of the buffer.  */
  bufp->used = b - bufp->buffer;

#ifdef DEBUG
  if (debug)
    {
      DEBUG_PRINT1 ("\nCompiled pattern: ");
      print_compiled_pattern (bufp);
    }
#endif /* DEBUG */

  return REG_NOERROR;
} /* regex_compile */

/* Subroutines for `regex_compile'.  */

/* Store OP at LOC followed by two-byte integer parameter ARG.  */

static void
store_op1 (op, loc, arg)
    re_opcode_t op;
    unsigned char *loc;
    int arg;
{
  *loc = (unsigned char) op;
  STORE_NUMBER (loc + 1, arg);
}


/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */

static void
store_op2 (op, loc, arg1, arg2)
    re_opcode_t op;
    unsigned char *loc;
    int arg1, arg2;
{
  *loc = (unsigned char) op;
  STORE_NUMBER (loc + 1, arg1);
  STORE_NUMBER (loc + 3, arg2);
}


/* Copy the bytes from LOC to END to open up three bytes of space at LOC
   for OP followed by two-byte integer parameter ARG.  */

static void
insert_op1 (op, loc, arg, end)
    re_opcode_t op;
    unsigned char *loc;
    int arg;
    unsigned char *end;    
{
  register unsigned char *pfrom = end;
  register unsigned char *pto = end + 3;

  while (pfrom != loc)
    *--pto = *--pfrom;
    
  store_op1 (op, loc, arg);
}


/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */

static void
insert_op2 (op, loc, arg1, arg2, end)
    re_opcode_t op;
    unsigned char *loc;
    int arg1, arg2;
    unsigned char *end;    
{
  register unsigned char *pfrom = end;
  register unsigned char *pto = end + 5;

  while (pfrom != loc)
    *--pto = *--pfrom;
    
  store_op2 (op, loc, arg1, arg2);
}


/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
   after an alternative or a begin-subexpression.  We assume there is at
   least one character before the ^.  */

static boolean
at_begline_loc_p (pattern, p, syntax)
    const char *pattern, *p;
    reg_syntax_t syntax;
{
  const char *prev = p - 2;
  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
  
  return
       /* After a subexpression?  */
       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
       /* After an alternative?  */
    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
}


/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
   at least one character after the $, i.e., `P < PEND'.  */

static boolean
at_endline_loc_p (p, pend, syntax)
    const char *p, *pend;
    int syntax;
{
  const char *next = p;
  boolean next_backslash = *next == '\\';
  const char *next_next = p + 1 < pend ? p + 1 : NULL;
  
  return
       /* Before a subexpression?  */
       (syntax & RE_NO_BK_PARENS ? *next == ')'
        : next_backslash && next_next && *next_next == ')')
       /* Before an alternative?  */
    || (syntax & RE_NO_BK_VBAR ? *next == '|'
        : next_backslash && next_next && *next_next == '|');
}


/* Returns true if REGNUM is in one of COMPILE_STACK's elements and 
   false if it's not.  */

static boolean
group_in_compile_stack (compile_stack, regnum)
    compile_stack_type compile_stack;
    regnum_t regnum;
{
  int this_element;

  for (this_element = compile_stack.avail - 1;  
       this_element >= 0; 
       this_element--)
    if (compile_stack.stack[this_element].regnum == regnum)
      return true;

  return false;
}


/* Read the ending character of a range (in a bracket expression) from the
   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
   Then we set the translation of all bits between the starting and
   ending characters (inclusive) in the compiled pattern B.
   
   Return an error code.
   
   We use these short variable names so we can use the same macros as
   `regex_compile' itself.  */

static reg_errcode_t
compile_range (p_ptr, pend, translate, syntax, b)
    const char **p_ptr, *pend;
    char *translate;
    reg_syntax_t syntax;
    unsigned char *b;
{
  unsigned this_char;

  const char *p = *p_ptr;
2211
  int range_start, range_end;
Per Cederqvist's avatar
Per Cederqvist committed
2212
2213
2214
2215
  
  if (p == pend)
    return REG_ERANGE;

2216
2217
2218
2219
2220
2221
2222
2223
2224
  /* Even though the pattern is a signed `char *', we need to fetch
     with unsigned char *'s; if the high bit of the pattern character
     is set, the range endpoints will be negative if we fetch using a
     signed char *.

     We also want to fetch the endpoints without translating them; the 
     appropriate translation is done in the bit-setting loop below.  */
  range_start = ((unsigned char *) p)[-2];
  range_end   = ((unsigned char *) p)[0];
Per Cederqvist's avatar
Per Cederqvist committed
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361

  /* Have to increment the pointer into the pattern string, so the
     caller isn't still at the ending character.  */
  (*p_ptr)++;

  /* If the start is after the end, the range is empty.  */
  if (range_start > range_end)
    return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;

  /* Here we see why `this_char' has to be larger than an `unsigned
     char' -- the range is inclusive, so if `range_end' == 0xff
     (assuming 8-bit characters), we would otherwise go into an infinite
     loop, since all characters <= 0xff.  */
  for (this_char = range_start; this_char <= range_end; this_char++)
    {
      SET_LIST_BIT (TRANSLATE (this_char));
    }
  
  return REG_NOERROR;
}

/* Failure stack declarations and macros; both re_compile_fastmap and
   re_match_2 use a failure stack.  These have to be macros because of
   REGEX_ALLOCATE.  */
   

/* Number of failure points for which to initially allocate space
   when matching.  If this number is exceeded, we allocate more
   space, so it is not a hard limit.  */
#ifndef INIT_FAILURE_ALLOC
#define INIT_FAILURE_ALLOC 5
#endif

/* Roughly the maximum number of failure points on the stack.  Would be
   exactly that if always used MAX_FAILURE_SPACE each time we failed.
   This is a variable only so users of regex can assign to it; we never
   change it ourselves.  */
int re_max_failures = 2000;

typedef const unsigned char *fail_stack_elt_t;

typedef struct
{
  fail_stack_elt_t *stack;
  unsigned size;
  unsigned avail;			/* Offset of next open position.  */
} fail_stack_type;

#define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
#define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
#define FAIL_STACK_TOP()       (fail_stack.stack[fail_stack.avail])


/* Initialize `fail_stack'.  Do `return -2' if the alloc fails.  */

#define INIT_FAIL_STACK()						\
  do {									\
    fail_stack.stack = (fail_stack_elt_t *)				\
      REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t));	\
									\
    if (fail_stack.stack == NULL)					\
      return -2;							\
									\
    fail_stack.size = INIT_FAILURE_ALLOC;				\
    fail_stack.avail = 0;						\
  } while (0)


/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.

   Return 1 if succeeds, and 0 if either ran out of memory
   allocating space for it or it was already too large.  
   
   REGEX_REALLOCATE requires `destination' be declared.   */

#define DOUBLE_FAIL_STACK(fail_stack)					\
  ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS		\
   ? 0									\
   : ((fail_stack).stack = (fail_stack_elt_t *)				\
        REGEX_REALLOCATE ((fail_stack).stack, 				\
          (fail_stack).size * sizeof (fail_stack_elt_t),		\
          ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),	\
									\
      (fail_stack).stack == NULL					\
      ? 0								\
      : ((fail_stack).size <<= 1, 					\
         1)))


/* Push PATTERN_OP on FAIL_STACK. 

   Return 1 if was able to do so and 0 if ran out of memory allocating
   space to do so.  */
#define PUSH_PATTERN_OP(pattern_op, fail_stack)				\
  ((FAIL_STACK_FULL ()							\
    && !DOUBLE_FAIL_STACK (fail_stack))					\
    ? 0									\
    : ((fail_stack).stack[(fail_stack).avail++] = pattern_op,		\
       1))

/* This pushes an item onto the failure stack.  Must be a four-byte
   value.  Assumes the variable `fail_stack'.  Probably should only
   be called from within `PUSH_FAILURE_POINT'.  */
#define PUSH_FAILURE_ITEM(item)						\
  fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item

/* The complement operation.  Assumes `fail_stack' is nonempty.  */
#define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]

/* Used to omit pushing failure point id's when we're not debugging.  */
#ifdef DEBUG
#define DEBUG_PUSH PUSH_FAILURE_ITEM
#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
#else
#define DEBUG_PUSH(item)
#define DEBUG_POP(item_addr)
#endif


/* Push the information about the state we will need
   if we ever fail back to it.  
   
   Requires variables fail_stack, regstart, regend, reg_info, and
   num_regs be declared.  DOUBLE_FAIL_STACK requires `destination' be
   declared.
   
   Does `return FAILURE_CODE' if runs out of memory.  */

#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
  do {									\
    char *destination;							\
    /* Must be int, so when we don't save any registers, the arithmetic	\
       of 0 + -1 isn't done as unsigned.  */				\
    int this_reg;							\
    									\
    DEBUG_STATEMENT (failure_id++);					\
2362
    DEBUG_STATEMENT (nfailure_points_pushed++);				\
Per Cederqvist's avatar
Per Cederqvist committed
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
									\
    DEBUG_PRINT2 ("  slots needed: %d\n", NUM_FAILURE_ITEMS);		\
    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
									\
    /* Ensure we have enough space allocated for what we will push.  */	\
    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
      {									\
        if (!DOUBLE_FAIL_STACK (fail_stack))			\
          return failure_code;						\
									\
        DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
		       (fail_stack).size);				\
        DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
      }									\
									\
    /* Push the info, starting with the registers.  */			\
    DEBUG_PRINT1 ("\n");						\
									\
    for (this_reg = lowest_active_reg; this_reg <= highest_active_reg;	\
         this_reg++)							\
      {									\
	DEBUG_PRINT2 ("  Pushing reg: %d\n", this_reg);			\
        DEBUG_STATEMENT (num_regs_pushed++);				\
									\
	DEBUG_PRINT2 ("    start: 0x%x\n", regstart[this_reg]);		\
        PUSH_FAILURE_ITEM (regstart[this_reg]);				\
                                                                        \
	DEBUG_PRINT2 ("    end: 0x%x\n", regend[this_reg]);		\
        PUSH_FAILURE_ITEM (regend[this_reg]);				\
									\
	DEBUG_PRINT2 ("    info: 0x%x\n      ", reg_info[this_reg]);	\
        DEBUG_PRINT2 (" match_null=%d",					\
                      REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
        DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
        DEBUG_PRINT2 (" matched_something=%d",				\
                      MATCHED_SOMETHING (reg_info[this_reg]));		\
        DEBUG_PRINT2 (" ever_matched=%d",				\
                      EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
	DEBUG_PRINT1 ("\n");						\
        PUSH_FAILURE_ITEM (reg_info[this_reg].word);			\
      }									\
									\
    DEBUG_PRINT2 ("  Pushing  low active reg: %d\n", lowest_active_reg);\
    PUSH_FAILURE_ITEM (lowest_active_reg);				\
									\
    DEBUG_PRINT2 ("  Pushing high active reg: %d\n", highest_active_reg);\
    PUSH_FAILURE_ITEM (highest_active_reg);				\
									\
    DEBUG_PRINT2 ("  Pushing pattern 0x%x: ", pattern_place);		\
    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
    PUSH_FAILURE_ITEM (pattern_place);					\
									\
    DEBUG_PRINT2 ("  Pushing string 0x%x: `", string_place);		\
    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
				 size2);				\
    DEBUG_PRINT1 ("'\n");						\
    PUSH_FAILURE_ITEM (string_place);					\
									\
    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
    DEBUG_PUSH (failure_id);						\
  } while (0)

/* This is the number of items that are pushed and popped on the stack
   for each register.  */
#define NUM_REG_ITEMS  3

/* Individual items aside from the registers.  */
#ifdef DEBUG
#define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
#else
#define NUM_NONREG_ITEMS 4
#endif

/* We push at most this many items on the stack.  */
#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)

/* We actually push this many items.  */
#define NUM_FAILURE_ITEMS						\
  ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS 	\
    + NUM_NONREG_ITEMS)

/* How many items can still be added to the stack without overflowing it.  */
#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)


/* Pops what PUSH_FAIL_STACK pushes.

   We restore into the parameters, all of which should be lvalues:
     STR -- the saved data position.
     PAT -- the saved pattern position.
     LOW_REG, HIGH_REG -- the highest and lowest active registers.
     REGSTART, REGEND -- arrays of string positions.
     REG_INFO -- array of information about each subexpression.
   
   Also assumes the variables `fail_stack' and (if debugging), `bufp',
   `pend', `string1', `size1', `string2', and `size2'.  */

#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
{									\
  DEBUG_STATEMENT (fail_stack_elt_t failure_id;)			\
  int this_reg;								\
  const unsigned char *string_temp;					\
									\
  assert (!FAIL_STACK_EMPTY ());					\
									\
  /* Remove failure points and point to how many regs pushed.  */	\
  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
									\
  assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
									\
  DEBUG_POP (&failure_id);						\
  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
									\
  /* If the saved string location is NULL, it came from an		\
     on_failure_keep_string_jump opcode, and we want to throw away the	\
     saved NULL, thus retaining our current position in the string.  */	\
  string_temp = POP_FAILURE_ITEM ();					\
  if (string_temp != NULL)						\
    str = (const char *) string_temp;					\
									\
  DEBUG_PRINT2 ("  Popping string 0x%x: `", str);			\
  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
  DEBUG_PRINT1 ("'\n");							\
									\
  pat = (unsigned char *) POP_FAILURE_ITEM ();				\
  DEBUG_PRINT2 ("  Popping pattern 0x%x: ", pat);			\
  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
									\
  /* Restore register info.  */						\
  high_reg = (unsigned) POP_FAILURE_ITEM ();				\
  DEBUG_PRINT2 ("  Popping high active reg: %d\n", high_reg);		\
									\
  low_reg = (unsigned) POP_FAILURE_ITEM ();				\
  DEBUG_PRINT2 ("  Popping  low active reg: %d\n", low_reg);		\
									\
  for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
    {									\
      DEBUG_PRINT2 ("    Popping reg: %d\n", this_reg);			\
									\
      reg_info[this_reg].word = POP_FAILURE_ITEM ();			\
      DEBUG_PRINT2 ("      info: 0x%x\n", reg_info[this_reg]);		\
									\
      regend[this_reg] = (const char *) POP_FAILURE_ITEM ();		\
      DEBUG_PRINT2 ("      end: 0x%x\n", regend[this_reg]);		\
									\
      regstart[this_reg] = (const char *) POP_FAILURE_ITEM ();		\
      DEBUG_PRINT2 ("      start: 0x%x\n", regstart[this_reg]);		\
    }									\
2516
2517
									\
  DEBUG_STATEMENT (nfailure_points_popped++);				\
Per Cederqvist's avatar
Per Cederqvist committed
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
} /* POP_FAILURE_POINT */

/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
   characters can start a string that matches the pattern.  This fastmap
   is used by re_search to skip quickly over impossible starting points.

   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
   area as BUFP->fastmap.
   
   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
   the pattern buffer.

   Returns 0 if we succeed, -2 if an internal error.   */

int
re_compile_fastmap (bufp)
     struct re_pattern_buffer *bufp;
{
  int j, k;
  fail_stack_type fail_stack;
#ifndef REGEX_MALLOC
  char *destination;
#endif
  /* We don't push any register information onto the failure stack.  */
  unsigned num_regs = 0;
  
  register char *fastmap = bufp->fastmap;
  unsigned char *pattern = bufp->buffer;
  unsigned long size = bufp->used;
  const unsigned char *p = pattern;
  register unsigned char *pend = pattern + size;

  /* Assume that each path through the pattern can be null until
     proven otherwise.  We set this false at the bottom of switch
     statement, to which we get only if a particular path doesn't
     match the empty string.  */
  boolean path_can_be_null = true;

  /* We aren't doing a `succeed_n' to begin with.  */
  boolean succeed_n_p = false;

  assert (fastmap != NULL && p != NULL);
  
  INIT_FAIL_STACK ();
  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
  bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
  bufp->can_be_null = 0;
      
  while (p != pend || !FAIL_STACK_EMPTY ())
    {
      if (p == pend)
        {
          bufp->can_be_null |= path_can_be_null;
          
          /* Reset for next path.  */
          path_can_be_null = true;
          
          p = fail_stack.stack[--fail_stack.avail];
	}

      /* We should never be about to go beyond the end of the pattern.  */
      assert (p < pend);
      
#ifdef SWITCH_ENUM_BUG
      switch ((int) ((re_opcode_t) *p++))
#else
      switch ((re_opcode_t) *p++)
#endif
	{

        /* I guess the idea here is to simply not bother with a fastmap
           if a backreference is used, since it's too hard to figure out
           the fastmap for the corresponding group.  Setting
           `can_be_null' stops `re_search_2' from using the fastmap, so
           that is all we do.  */
	case duplicate:
	  bufp->can_be_null = 1;
          return 0;


      /* Following are the cases which match a character.  These end
         with `break'.  */

	case exactn:
          fastmap[p[1]] = 1;
	  break;


        case charset:
          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
              fastmap[j] = 1;
	  break;


	case charset_not:
	  /* Chars beyond end of map must be allowed.  */
	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
            fastmap[j] = 1;

	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
              fastmap[j] = 1;
          break;


	case wordchar:
	  for (j = 0; j < (1 << BYTEWIDTH); j++)
	    if (SYNTAX (j) == Sword)
	      fastmap[j] = 1;
	  break;


	case notwordchar:
	  for (j = 0; j < (1 << BYTEWIDTH); j++)
	    if (SYNTAX (j) != Sword)
	      fastmap[j] = 1;
	  break;


        case anychar:
          /* `.' matches anything ...  */
	  for (j = 0; j < (1 << BYTEWIDTH); j++)
            fastmap[j] = 1;

          /* ... except perhaps newline.  */
          if (!(bufp->syntax & RE_DOT_NEWLINE))
            fastmap['\n'] = 0;

          /* Return if we have already set `can_be_null'; if we have,
             then the fastmap is irrelevant.  Something's wrong here.  */
	  else if (bufp->can_be_null)
	    return 0;

          /* Otherwise, have to check alternative paths.  */
	  break;


#ifdef emacs
        case syntaxspec:
	  k = *p++;
	  for (j = 0; j < (1 << BYTEWIDTH); j++)
	    if (SYNTAX (j) == (enum syntaxcode) k)
	      fastmap[j] = 1;
	  break;


	case notsyntaxspec:
	  k = *p++;
	  for (j = 0; j < (1 << BYTEWIDTH); j++)
	    if (SYNTAX (j) != (enum syntaxcode) k)
	      fastmap[j] = 1;
	  break;


      /* All cases after this match the empty string.  These end with
         `continue'.  */


	case before_dot:
	case at_dot:
	case after_dot:
          continue;
#endif /* not emacs */


        case no_op:
        case begline:
        case endline:
	case begbuf:
	case endbuf:
	case wordbound:
	case notwordbound:
	case wordbeg:
	case wordend:
        case push_dummy_failure:
          continue;


	case jump_n:
        case pop_failure_jump:
	case maybe_pop_jump:
	case jump:
        case jump_past_alt:
	case dummy_failure_jump:
          EXTRACT_NUMBER_AND_INCR (j, p);
	  p += j;	
	  if (j > 0)
	    continue;
            
          /* Jump backward implies we just went through the body of a
             loop and matched nothing.  Opcode jumped to should be
             `on_failure_jump' or `succeed_n'.  Just treat it like an
             ordinary jump.  For a * loop, it has pushed its failure
             point already; if so, discard that as redundant.  */
          if ((re_opcode_t) *p != on_failure_jump
	      && (re_opcode_t) *p != succeed_n)
	    continue;

          p++;
          EXTRACT_NUMBER_AND_INCR (j, p);
          p += j;		
	  
          /* If what's on the stack is where we are now, pop it.  */
          if (!FAIL_STACK_EMPTY () 
	      && fail_stack.stack[fail_stack.avail - 1] == p)
            fail_stack.avail--;

          continue;


        case on_failure_jump:
        case on_failure_keep_string_jump:
	handle_on_failure_jump:
          EXTRACT_NUMBER_AND_INCR (j, p);

          /* For some patterns, e.g., `(a?)?', `p+j' here points to the
             end of the pattern.  We don't want to push such a point,
             since when we restore it above, entering the switch will
             increment `p' past the end of the pattern.  We don't need
             to push such a point since we obviously won't find any more
             fastmap entries beyond `pend'.  Such a pattern can match
             the null string, though.  */
          if (p + j < pend)
            {
              if (!PUSH_PATTERN_OP (p + j, fail_stack))
                return -2;
            }
          else
            bufp->can_be_null = 1;

          if (succeed_n_p)
            {
              EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
              succeed_n_p = false;
	    }

          continue;


	case succeed_n:
          /* Get to the number of times to succeed.  */
          p += 2;		

          /* Increment p past the n for when k != 0.  */
          EXTRACT_NUMBER_AND_INCR (k, p);
          if (k == 0)
	    {
              p -= 4;
  	      succeed_n_p = true;  /* Spaghetti code alert.  */
              goto handle_on_failure_jump;
            }
          continue;


	case set_number_at:
          p += 4;
          continue;


	case start_memory:
        case stop_memory:
	  p += 2;
	  continue;


	default:
          abort (); /* We have listed all the cases.  */
        } /* switch *p++ */

      /* Getting here means we have found the possible starting
         characters for one path of the pattern -- and that the empty
         string does not match.  We need not follow this path further.
         Instead, look at the next alternative (remembered on the
         stack), or quit if no more.  The test at the top of the loop
         does these things.  */
      path_can_be_null = false;
      p = pend;
    } /* while p */

  /* Set `can_be_null' for the last path (also the first path, if the
     pattern is empty).  */
  bufp->can_be_null |= path_can_be_null;
  return 0;
} /* re_compile_fastmap */

/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
   this memory for recording register information.  STARTS and ENDS
   must be allocated using the malloc library routine, and must each
   be at least NUM_REGS * sizeof (regoff_t) bytes long.

   If NUM_REGS == 0, then subsequent matches should allocate their own
   register data.

   Unless this function is called, the first search or match using
   PATTERN_BUFFER will allocate its own register data, without
   freeing the old data.  */

void
re_set_registers (bufp, regs, num_regs, starts, ends)
    struct re_pattern_buffer *bufp;
    struct re_registers *regs;
    unsigned num_regs;
    regoff_t *starts, *ends;
{
  if (num_regs)
    {
      bufp->regs_allocated = REGS_REALLOCATE;
      regs->num_regs = num_regs;
      regs->start = starts;
      regs->end = ends;
    }
  else
    {
      bufp->regs_allocated = REGS_UNALLOCATED;
      regs->num_regs = 0;
      regs->start = regs->end = (regoff_t) 0;
    }
}

/* Searching routines.  */

/* Like re_search_2, below, but only one string is specified, and
   doesn't let you say where to stop matching. */

int
re_search (bufp, string, size, startpos, range, regs)
     struct re_pattern_buffer *bufp;
     const char *string;
     int size, startpos, range;
     struct re_registers *regs;
{
  return re_search_2 (bufp, NULL, 0, string, size, startpos, range, 
		      regs, size);
}


/* Using the compiled pattern in BUFP->buffer, first tries to match the
   virtual concatenation of STRING1 and STRING2, starting first at index
   STARTPOS, then at STARTPOS + 1, and so on.
   
   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
   
   RANGE is how far to scan while trying to match.  RANGE = 0 means try
   only at STARTPOS; in general, the last start tried is STARTPOS +
   RANGE.
   
   In REGS, return the indices of the virtual concatenation of STRING1
   and STRING2 that matched the entire BUFP->buffer and its contained
   subexpressions.
   
   Do not consider matching one past the index STOP in the virtual
   concatenation of STRING1 and STRING2.

   We return either the position in the strings at which the match was
   found, -1 if no match, or -2 if error (such as failure
   stack overflow).  */

int
re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
     struct re_pattern_buffer *bufp;
     const char *string1, *string2;
     int size1, size2;
     int startpos;
     int range;
     struct re_registers *regs;
     int stop;
{
  int val;
  register char *fastmap = bufp->fastmap;
  register char *translate = bufp->translate;
  int total_size = size1 + size2;
  int endpos = startpos + range;

  /* Check for out-of-range STARTPOS.  */
  if (startpos < 0 || startpos > total_size)
    return -1;
    
  /* Fix up RANGE if it might eventually take us outside
     the virtual concatenation of STRING1 and STRING2.  */
  if (endpos < -1)
    range = -1 - startpos;
  else if (endpos > total_size)
    range = total_size - startpos;

  /* If the search isn't to be a backwards one, don't waste time in a
2906
2907
     search for a pattern that must be anchored.  */
  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
Per Cederqvist's avatar
Per Cederqvist committed
2908
2909
2910
2911
2912
2913
2914
    {
      if (startpos > 0)
	return -1;
      else
	range = 1;
    }

2915
2916
2917
2918
2919
2920
  /* Update the fastmap now if not correct already.  */
  if (fastmap && !bufp->fastmap_accurate)
    if (re_compile_fastmap (bufp) == -2)
      return -2;
  
  /* Loop through the string, looking for a place to start matching.  */
Per Cederqvist's avatar
Per Cederqvist committed
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
  for (;;)
    { 
      /* If a fastmap is supplied, skip quickly over characters that
         cannot be the start of a match.  If the pattern can match the
         null string, however, we don't need to skip characters; we want
         the first null string.  */
      if (fastmap && startpos < total_size && !bufp->can_be_null)
	{
	  if (range > 0)	/* Searching forwards.  */
	    {
	      register const char *d;
	      register int lim = 0;
	      int irange = range;

              if (startpos < size1 && startpos + range >= size1)
                lim = range - (size1 - startpos);

	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
   
              /* Written out as an if-else to avoid testing `translate'
                 inside the loop.  */
	      if (translate)
                while (range > lim
2944
2945
                       && !fastmap[(unsigned char)
				   translate[(unsigned char) *d++]])
Per Cederqvist's avatar
Per Cederqvist committed
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
                  range--;
	      else
                while (range > lim && !fastmap[(unsigned char) *d++])
                  range--;

	      startpos += irange - range;
	    }
	  else				/* Searching backwards.  */