bignum-random-prime.c 12 KB
Newer Older
1 2 3 4 5 6 7
/* bignum-random-prime.c
 *
 * Generation of random provable primes.
 */

/* nettle, low-level cryptographics library
 *
Niels Möller's avatar
Niels Möller committed
8
 * Copyright (C) 2010 Niels Möller
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 *  
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
 * The nettle library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with the nettle library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA.
 */

#if HAVE_CONFIG_H
# include "config.h"
#endif

#ifndef RANDOM_PRIME_VERBOSE
#define RANDOM_PRIME_VERBOSE 0
#endif

#include <assert.h>
#include <stdlib.h>

#if RANDOM_PRIME_VERBOSE
#include <stdio.h>
#define VERBOSE(x) (fputs((x), stderr))
#else
#define VERBOSE(x)
#endif

#include "bignum.h"

#include "macros.h"

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
/* Use a table of p_2 = 3 to p_{172} = 1021, used for sieving numbers
   of up to 20 bits. */

#define NPRIMES 171
#define TRIAL_DIV_BITS 20
#define TRIAL_DIV_MASK ((1 << TRIAL_DIV_BITS) - 1)

/* A 20-bit number x is divisible by p iff

     ((x * inverse) & TRIAL_DIV_MASK) <= limit
*/
struct trial_div_info {
  uint32_t inverse; /* p^{-1} (mod 2^20) */
  uint32_t limit;   /* floor( (2^20 - 1) / p) */
};

static const uint16_t
primes[NPRIMES] = {
  3,5,7,11,13,17,19,23,
  29,31,37,41,43,47,53,59,
  61,67,71,73,79,83,89,97,
  101,103,107,109,113,127,131,137,
  139,149,151,157,163,167,173,179,
  181,191,193,197,199,211,223,227,
  229,233,239,241,251,257,263,269,
  271,277,281,283,293,307,311,313,
  317,331,337,347,349,353,359,367,
  373,379,383,389,397,401,409,419,
  421,431,433,439,443,449,457,461,
  463,467,479,487,491,499,503,509,
  521,523,541,547,557,563,569,571,
  577,587,593,599,601,607,613,617,
  619,631,641,643,647,653,659,661,
  673,677,683,691,701,709,719,727,
  733,739,743,751,757,761,769,773,
  787,797,809,811,821,823,827,829,
  839,853,857,859,863,877,881,883,
  887,907,911,919,929,937,941,947,
  953,967,971,977,983,991,997,1009,
  1013,1019,1021,
};

static const uint32_t
prime_square[NPRIMES+1] = {
  9,25,49,121,169,289,361,529,
  841,961,1369,1681,1849,2209,2809,3481,
  3721,4489,5041,5329,6241,6889,7921,9409,
  10201,10609,11449,11881,12769,16129,17161,18769,
  19321,22201,22801,24649,26569,27889,29929,32041,
  32761,36481,37249,38809,39601,44521,49729,51529,
  52441,54289,57121,58081,63001,66049,69169,72361,
  73441,76729,78961,80089,85849,94249,96721,97969,
  100489,109561,113569,120409,121801,124609,128881,134689,
  139129,143641,146689,151321,157609,160801,167281,175561,
  177241,185761,187489,192721,196249,201601,208849,212521,
  214369,218089,229441,237169,241081,249001,253009,259081,
  271441,273529,292681,299209,310249,316969,323761,326041,
  332929,344569,351649,358801,361201,368449,375769,380689,
  383161,398161,410881,413449,418609,426409,434281,436921,
  452929,458329,466489,477481,491401,502681,516961,528529,
  537289,546121,552049,564001,573049,579121,591361,597529,
  619369,635209,654481,657721,674041,677329,683929,687241,
  703921,727609,734449,737881,744769,769129,776161,779689,
  786769,822649,829921,844561,863041,877969,885481,896809,
  908209,935089,942841,954529,966289,982081,994009,1018081,
  1026169,1038361,1042441,1L<<20
114 115
};

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
static const struct trial_div_info
trial_div_table[NPRIMES] = {
  {699051,349525},{838861,209715},{748983,149796},{953251,95325},
  {806597,80659},{61681,61680},{772635,55188},{866215,45590},
  {180789,36157},{1014751,33825},{793517,28339},{1023001,25575},
  {48771,24385},{870095,22310},{217629,19784},{710899,17772},
  {825109,17189},{281707,15650},{502135,14768},{258553,14364},
  {464559,13273},{934875,12633},{1001449,11781},{172961,10810},
  {176493,10381},{203607,10180},{568387,9799},{788837,9619},
  {770193,9279},{1032063,8256},{544299,8004},{619961,7653},
  {550691,7543},{182973,7037},{229159,6944},{427445,6678},
  {701195,6432},{370455,6278},{90917,6061},{175739,5857},
  {585117,5793},{225087,5489},{298817,5433},{228877,5322},
  {442615,5269},{546651,4969},{244511,4702},{83147,4619},
  {769261,4578},{841561,4500},{732687,4387},{978961,4350},
  {133683,4177},{65281,4080},{629943,3986},{374213,3898},
  {708079,3869},{280125,3785},{641833,3731},{618771,3705},
  {930477,3578},{778747,3415},{623751,3371},{40201,3350},
  {122389,3307},{950371,3167},{1042353,3111},{18131,3021},
  {285429,3004},{549537,2970},{166487,2920},{294287,2857},
  {919261,2811},{636339,2766},{900735,2737},{118605,2695},
  {10565,2641},{188273,2614},{115369,2563},{735755,2502},
  {458285,2490},{914767,2432},{370513,2421},{1027079,2388},
  {629619,2366},{462401,2335},{649337,2294},{316165,2274},
  {484655,2264},{65115,2245},{326175,2189},{1016279,2153},
  {990915,2135},{556859,2101},{462791,2084},{844629,2060},
  {404537,2012},{457123,2004},{577589,1938},{638347,1916},
  {892325,1882},{182523,1862},{1002505,1842},{624371,1836},
  {69057,1817},{210787,1786},{558769,1768},{395623,1750},
  {992745,1744},{317855,1727},{384877,1710},{372185,1699},
  {105027,1693},{423751,1661},{408961,1635},{908331,1630},
  {74551,1620},{36933,1605},{617371,1591},{506045,1586},
  {24929,1558},{529709,1548},{1042435,1535},{31867,1517},
  {166037,1495},{928781,1478},{508975,1458},{4327,1442},
  {779637,1430},{742091,1418},{258263,1411},{879631,1396},
  {72029,1385},{728905,1377},{589057,1363},{348621,1356},
  {671515,1332},{710453,1315},{84249,1296},{959363,1292},
  {685853,1277},{467591,1274},{646643,1267},{683029,1264},
  {439927,1249},{254461,1229},{660713,1223},{554195,1220},
  {202911,1215},{753253,1195},{941457,1190},{776635,1187},
  {509511,1182},{986147,1156},{768879,1151},{699431,1140},
  {696417,1128},{86169,1119},{808997,1114},{25467,1107},
  {201353,1100},{708087,1084},{1018339,1079},{341297,1073},
  {434151,1066},{96287,1058},{950765,1051},{298257,1039},
  {675933,1035},{167731,1029},{815445,1027},
161 162
};

163 164 165 166 167
/* Element j gives the index of the first prime of size 3+j bits */
static uint8_t
prime_by_size[9] = {
  1,3,5,10,17,30,53,96,171
};
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

/* Combined Miller-Rabin test to the base a, and checking the
   conditions from Pocklington's theorem. */
static int
miller_rabin_pocklington(mpz_t n, mpz_t nm1, mpz_t nm1dq, mpz_t a)
{
  mpz_t r;
  mpz_t y;
  int is_prime = 0;

  /* Avoid the mp_bitcnt_t type for compatibility with older GMP
     versions. */
  unsigned k;
  unsigned j;

  VERBOSE(".");

  if (mpz_even_p(n) || mpz_cmp_ui(n, 3) < 0)
    return 0;

  mpz_init(r);
  mpz_init(y);

  k = mpz_scan1(nm1, 0);
  assert(k > 0);

  mpz_fdiv_q_2exp (r, nm1, k);

  mpz_powm(y, a, r, n);

  if (mpz_cmp_ui(y, 1) == 0 || mpz_cmp(y, nm1) == 0)
199 200
    goto passed_miller_rabin;
    
201 202 203 204 205 206
  for (j = 1; j < k; j++)
    {
      mpz_powm_ui (y, y, 2, n);

      if (mpz_cmp_ui (y, 1) == 0)
	break;
207

208
      if (mpz_cmp (y, nm1) == 0)
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
	{
	passed_miller_rabin:
	  /* We know that a^{n-1} = 1 (mod n)

	     Remains to check that gcd(a^{(n-1)/q} - 1, n) == 1 */      
	  VERBOSE("x");

	  mpz_powm(y, a, nm1dq, n);
	  mpz_sub_ui(y, y, 1);
	  mpz_gcd(y, y, n);
	  is_prime = mpz_cmp_ui (y, 1) == 0;
	  VERBOSE(is_prime ? "\n" : "");
	  break;
	}

224 225 226 227 228 229 230 231
    }

  mpz_clear(r);
  mpz_clear(y);

  return is_prime;
}

232 233 234
/* The algorithm is based on the following special case of
   Pocklington's theorem:

235
   Assume that n = 1 + f q, where q is a prime, q > sqrt(n) - 1. If we
236 237 238
   can find an a such that

     a^{n-1} = 1 (mod n)
239
     gcd(a^f - 1, n) = 1
240 241 242 243 244 245 246 247 248 249 250 251 252 253

   then n is prime.

   Proof: Assume that n is composite, with smallest prime factor p <=
   sqrt(n). Since q is prime, and q > sqrt(n) - 1 >= p - 1, q and p-1
   are coprime, so that we can define u = q^{-1} (mod (p-1)). The
   assumption a^{n-1} = 1 (mod n) implies that also a^{n-1} = 1 (mod
   p). Since p is prime, we have a^{(p-1)} = 1 (mod p). Now, r =
   (n-1)/q = (n-1) u (mod (p-1)), and it follows that a^r = a^{(n-1)
   u} = 1 (mod p). Then p is a common factor of a^r - 1 and n. This
   contradicts gcd(a^r - 1, n) = 1, and concludes the proof.

   If n is specified as k bits, we need q of size ceil(k/2) + 1 bits
   (or more) to make the theorem apply.
254 255 256 257
*/

/* Generate a prime number p of size bits with 2 p0q dividing (p-1).
   p0 must be of size >= ceil(bits/2) + 1. The extra factor q can be
258 259
   omitted. If top_bits_set is one, the top most two bits are one,
   suitable for RSA primes. */
260
void
261 262
_nettle_generate_pocklington_prime (mpz_t p, mpz_t r,
				    unsigned bits, int top_bits_set, 
263 264 265 266
				    void *ctx, nettle_random_func random, 
				    const mpz_t p0,
				    const mpz_t q,
				    const mpz_t p0q)
267
{
268
  mpz_t r_min, r_range, pm1,a;
269 270 271
  
  assert (2*mpz_sizeinbase (p0, 2) > bits + 1);

272 273
  mpz_init (r_min);
  mpz_init (r_range);
274 275 276
  mpz_init (pm1);
  mpz_init (a);

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
  if (top_bits_set)
    {
      /* i = floor (2^{bits-3} / p0q), then 3I + 3 <= r <= 4I, with I
	 - 2 possible values. */
      mpz_set_ui (r_min, 1);
      mpz_mul_2exp (r_min, r_min, bits-3);
      mpz_fdiv_q (r_min, r_min, p0q);
      mpz_sub_ui (r_range, r_min, 2);
      mpz_mul_ui (r_min, r_min, 3);
      mpz_add_ui (r_min, r_min, 3);
    }
  else
    {
      /* i = floor (2^{bits-2} / p0q), I + 1 <= r <= 2I */
      mpz_set_ui (r_range, 1);
      mpz_mul_2exp (r_range, r_range, bits-2);
      mpz_fdiv_q (r_range, r_range, p0q);
      mpz_add_ui (r_min, r_range, 1);
    }
296
  for (;;)
297
    {
298
      uint8_t buf[1];
299

300 301
      nettle_mpz_random (r, ctx, random, r_range);
      mpz_add (r, r, r_min);
302

303 304 305 306
      /* Set p = 2*r*p0q + 1 */
      mpz_mul_2exp(r, r, 1);
      mpz_mul (pm1, r, p0q);
      mpz_add_ui (p, pm1, 1);
307

308 309 310 311 312 313 314 315 316 317 318 319 320
      assert(mpz_sizeinbase(p, 2) == bits);

      /* Should use GMP trial division interface when that
	 materializes, we don't need any testing beyond trial
	 division. */
      if (!mpz_probab_prime_p (p, 1))
	continue;

      random(ctx, sizeof(buf), buf);
	  
      mpz_set_ui (a, buf[0] + 2);

      if (q)
321 322 323 324 325 326 327 328 329 330 331 332 333 334
	{
	  mpz_t e;
	  int is_prime;
	  
	  mpz_init (e);

	  mpz_mul (e, r, q);
	  is_prime = miller_rabin_pocklington(p, pm1, e, a);
	  mpz_clear (e);

	  if (is_prime)
	    break;
	}
      else if (miller_rabin_pocklington(p, pm1, r, a))
335 336
	break;
    }
337 338
  mpz_clear (r_min);
  mpz_clear (r_range);
339 340 341
  mpz_clear (pm1);
  mpz_clear (a);
}
342

343 344
/* Generate random prime of a given size. Maurer's algorithm (Alg.
   6.42 Handbook of applied cryptography), but with ratio = 1/2 (like
345
   the variant in fips186-3). */
346
void
347 348 349
nettle_random_prime(mpz_t p, unsigned bits, int top_bits_set,
		    void *random_ctx, nettle_random_func random,
		    void *progress_ctx, nettle_progress_func progress)
350 351 352 353 354 355 356
{
  assert (bits >= 3);
  if (bits <= 10)
    {
      unsigned first;
      unsigned choices;
      uint8_t buf;
357

358 359 360
      assert (!top_bits_set);

      random (random_ctx, sizeof(buf), &buf);
361

362 363 364 365 366 367 368 369 370 371 372
      first = prime_by_size[bits-3];
      choices = prime_by_size[bits-2] - first;
      
      mpz_set_ui (p, primes[first + buf % choices]);
    }
  else if (bits <= 20)
    {
      unsigned long highbit;
      uint8_t buf[3];
      unsigned long x;
      unsigned j;
373
      
374 375
      assert (!top_bits_set);

376 377 378
      highbit = 1L << (bits - 1);

    again:
379
      random (random_ctx, sizeof(buf), buf);
380 381 382 383
      x = READ_UINT24(buf);
      x &= (highbit - 1);
      x |= highbit | 1;

384 385 386 387 388 389 390
      for (j = 0; prime_square[j] <= x; j++)
	{
	  unsigned q = x * trial_div_table[j].inverse & TRIAL_DIV_MASK;
	  if (q <= trial_div_table[j].limit)
	    goto again;
	}
      mpz_set_ui (p, x);
391 392 393
    }
  else
    {
394
      mpz_t q, r;
395 396

      mpz_init (q);
397
      mpz_init (r);
398

399 400 401
     /* Bit size ceil(k/2) + 1, slightly larger than used in Alg. 4.62
	in Handbook of Applied Cryptography (which seems to be
	incorrect for odd k). */
402 403
      nettle_random_prime (q, (bits+3)/2, 0, random_ctx, random,
			   progress_ctx, progress);
404

405 406
      _nettle_generate_pocklington_prime (p, r, bits, top_bits_set,
					  random_ctx, random,
407 408
					  q, NULL, q);
      
409 410 411
      if (progress)
	progress (progress_ctx, 'x');

412
      mpz_clear (q);
413
      mpz_clear (r);
414 415
    }
}