camellia-set-encrypt-key.c 9.22 KB
Newer Older
1
2
3
4
5
6
7
8
/* camellia-set-encrypt-key.c
 *
 * Key setup for the camellia block cipher.
 */
/*
 * Copyright (C) 2006,2007
 * NTT (Nippon Telegraph and Telephone Corporation).
 *
Niels Möller's avatar
Niels Möller committed
9
 * Copyright (C) 2010 Niels Möller
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */

/*
 * Algorithm Specification 
 *  http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html
 */

/* Based on camellia.c ver 1.2.0, see
   http://info.isl.ntt.co.jp/crypt/eng/camellia/dl/camellia-LGPL-1.2.0.tar.gz.
 */
#if HAVE_CONFIG_H
# include "config.h"
#endif

#include <assert.h>
39
#include <limits.h>
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

#include "camellia-internal.h"

#include "macros.h"

/* key constants */

#define SIGMA1 0xA09E667F3BCC908BULL
#define SIGMA2 0xB67AE8584CAA73B2ULL
#define SIGMA3 0xC6EF372FE94F82BEULL
#define SIGMA4 0x54FF53A5F1D36F1CULL
#define SIGMA5 0x10E527FADE682D1DULL
#define SIGMA6 0xB05688C2B3E6C1FDULL

#define CAMELLIA_SP1110(INDEX) (_nettle_camellia_table.sp1110[(int)(INDEX)])
#define CAMELLIA_SP0222(INDEX) (_nettle_camellia_table.sp0222[(int)(INDEX)])
#define CAMELLIA_SP3033(INDEX) (_nettle_camellia_table.sp3033[(int)(INDEX)])
#define CAMELLIA_SP4404(INDEX) (_nettle_camellia_table.sp4404[(int)(INDEX)])

#define CAMELLIA_F(x, k, y) do {		\
    uint32_t __yl, __yr;			\
    uint64_t __i = (x) ^ (k);			\
    __yl					\
      = CAMELLIA_SP1110( __i & 0xff)		\
      ^ CAMELLIA_SP0222((__i >> 24) & 0xff)	\
      ^ CAMELLIA_SP3033((__i >> 16) & 0xff)	\
      ^ CAMELLIA_SP4404((__i >> 8) & 0xff);	\
    __yr					\
      = CAMELLIA_SP1110( __i >> 56)		\
      ^ CAMELLIA_SP0222((__i >> 48) & 0xff)	\
      ^ CAMELLIA_SP3033((__i >> 40) & 0xff)	\
      ^ CAMELLIA_SP4404((__i >> 32) & 0xff);	\
    __yl ^= __yr;				\
73
    __yr = ROTL32(24, __yr);			\
74
75
76
77
    __yr ^= __yl;				\
    (y) = ((uint64_t) __yl << 32) | __yr;	\
  } while (0)

78
79
80
81
82
#if ! HAVE_NATIVE_64_BIT
#define CAMELLIA_F_HALF_INV(x) do {            \
    uint32_t __t, __w;                         \
    __t = (x) >> 32;                           \
    __w = __t ^(x);                            \
83
    __w = ROTL32(8, __w);                       \
84
85
86
87
    (x) = ((uint64_t) __w << 32) | (__t ^ __w);        \
  } while (0)
#endif

88
89
void
camellia_set_encrypt_key(struct camellia_ctx *ctx,
90
			 size_t length, const uint8_t *key)
91
{
92
  uint64_t k0, k1;
93
94

  uint64_t subkey[34];
95
  uint64_t w, kw2, kw4;
96
97
98
99
  
  uint32_t dw, tl, tr;
  unsigned i;

100
101
  k0 = READ_UINT64(key);
  k1 = READ_UINT64(key +  8);
102
103
104
  
  if (length == 16)
    {
105
      ctx->nkeys = 24;
106
107
108
109
      /**
       * generate KL dependent subkeys
       */
      subkey[0] = k0; subkey[1] = k1;
110
      ROTL128(15, k0, k1);
111
      subkey[4] = k0; subkey[5] = k1;
112
      ROTL128(30, k0, k1);
113
      subkey[10] = k0; subkey[11] = k1;
114
      ROTL128(15, k0, k1);
115
      subkey[13] = k1;
116
      ROTL128(17, k0, k1);
117
      subkey[16] = k0; subkey[17] = k1;
118
      ROTL128(17, k0, k1);
119
      subkey[18] = k0; subkey[19] = k1;
120
      ROTL128(17, k0, k1);
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
      subkey[22] = k0; subkey[23] = k1;

      /* generate KA. D1 is k0, d2 is k1. */
      /* FIXME: Make notation match the spec better. */
      /* For the 128-bit case, KR = 0, the construction of KA reduces to:

	 D1 = KL >> 64;
	 W = KL & MASK64;
	 D2 = F(D1, Sigma1);
	 W = D2 ^ W
	 D1 = F(W, Sigma2)
	 D2 = D2 ^ F(D1, Sigma3);
	 D1 = D1 ^ F(D2, Sigma4);
	 KA = (D1 << 64) | D2;
      */
      k0 = subkey[0]; w = subkey[1];
      CAMELLIA_F(k0, SIGMA1, k1);
      w ^= k1;
      CAMELLIA_F(w, SIGMA2, k0);
      CAMELLIA_F(k0, SIGMA3, w);
      k1 ^= w;
      CAMELLIA_F(k1, SIGMA4, w);
      k0 ^= w;

      /* generate KA dependent subkeys */
      subkey[2] = k0; subkey[3] = k1;
147
      ROTL128(15, k0, k1);
148
      subkey[6] = k0; subkey[7] = k1;
149
      ROTL128(15, k0, k1);
150
      subkey[8] = k0; subkey[9] = k1;
151
      ROTL128(15, k0, k1);
152
      subkey[12] = k0;
153
      ROTL128(15, k0, k1);
154
      subkey[14] = k0; subkey[15] = k1;
155
      ROTL128(34, k0, k1);
156
      subkey[20] = k0; subkey[21] = k1;
157
      ROTL128(17, k0, k1);
158
      subkey[24] = k0; subkey[25] = k1;
159
160
161
    }
  else
    {
162
      uint64_t k2, k3;
163
164

      ctx->nkeys = 32;
165
      k2 = READ_UINT64(key + 16);
166
167

      if (length == 24)
168
	k3 = ~k2;
169
170
171
      else
	{
	  assert (length == 32);
172
	  k3 = READ_UINT64(key + 24);
173
	}
174
175
      /* generate KL dependent subkeys */
      subkey[0] = k0; subkey[1] = k1;
176
      ROTL128(45, k0, k1);
177
      subkey[12] = k0; subkey[13] = k1;
178
      ROTL128(15, k0, k1);
179
      subkey[16] = k0; subkey[17] = k1;
180
      ROTL128(17, k0, k1);
181
      subkey[22] = k0; subkey[23] = k1;
182
      ROTL128(34, k0, k1);
183
184
185
      subkey[30] = k0; subkey[31] = k1;

      /* generate KR dependent subkeys */
186
      ROTL128(15, k2, k3);
187
      subkey[4] = k2; subkey[5] = k3;
188
      ROTL128(15, k2, k3);
189
      subkey[8] = k2; subkey[9] = k3;
190
      ROTL128(30, k2, k3);
191
      subkey[18] = k2; subkey[19] = k3;
192
      ROTL128(34, k2, k3);
193
      subkey[26] = k2; subkey[27] = k3;
194
      ROTL128(34, k2, k3);
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

      /* generate KA */
      /* The construction of KA is done as

	 D1 = (KL ^ KR) >> 64
	 D2 = (KL ^ KR) & MASK64
	 W = F(D1, SIGMA1)
	 D2 = D2 ^ W
	 D1 = F(D2, SIGMA2) ^ (KR >> 64)
	 D2 = F(D1, SIGMA3) ^ W ^ (KR & MASK64)
	 D1 = D1 ^ F(W, SIGMA2)
	 D2 = D2 ^ F(D1, SIGMA3)
	 D1 = D1 ^ F(D2, SIGMA4)
      */

      k0 = subkey[0] ^ k2;
      k1 = subkey[1] ^ k3;

      CAMELLIA_F(k0, SIGMA1, w);
      k1 ^= w;

      CAMELLIA_F(k1, SIGMA2, k0);
      k0 ^= k2;

      CAMELLIA_F(k0, SIGMA3, k1);
      k1 ^= w ^ k3;

      CAMELLIA_F(k1, SIGMA4, w);
      k0 ^= w;

      /* generate KB */
      k2 ^= k0; k3 ^= k1;
      CAMELLIA_F(k2, SIGMA5, w);
      k3 ^= w;
      CAMELLIA_F(k3, SIGMA6, w);
      k2 ^= w;

      /* generate KA dependent subkeys */
233
      ROTL128(15, k0, k1);
234
      subkey[6] = k0; subkey[7] = k1;
235
      ROTL128(30, k0, k1);
236
      subkey[14] = k0; subkey[15] = k1;
237
      ROTL128(32, k0, k1);
238
      subkey[24] = k0; subkey[25] = k1;
239
      ROTL128(17, k0, k1);
240
241
242
243
      subkey[28] = k0; subkey[29] = k1;

      /* generate KB dependent subkeys */
      subkey[2] = k2; subkey[3] = k3;
244
      ROTL128(30, k2, k3);
245
      subkey[10] = k2; subkey[11] = k3;
246
      ROTL128(30, k2, k3);
247
      subkey[20] = k2; subkey[21] = k3;
248
      ROTL128(51, k2, k3);
249
      subkey[32] = k2; subkey[33] = k3;
250
251
    }

252
253
254
  /* At this point, the subkey array contains the subkeys as described
     in the spec, 26 for short keys and 34 for large keys. */

255
  /* absorb kw2 to other subkeys */
256
  kw2 = subkey[1];
257

258
259
260
  subkey[3] ^= kw2;
  subkey[5] ^= kw2;
  subkey[7] ^= kw2;
261
  for (i = 8; i < ctx->nkeys; i += 8)
262
263
264
265
266
    {
      /* FIXME: gcc for x86_32 is smart enough to fetch the 32 low bits
	 and xor the result into the 32 high bits, but it still generates
	 worse code than for explicit 32-bit operations. */
      kw2 ^= (kw2 & ~subkey[i+1]) << 32;
267
      dw = (kw2 & subkey[i+1]) >> 32; kw2 ^= ROTL32(1, dw); 
268
269
270
271

      subkey[i+3] ^= kw2;
      subkey[i+5] ^= kw2;
      subkey[i+7] ^= kw2;
272
    }
273
274
  subkey[i] ^= kw2;
  
275
  /* absorb kw4 to other subkeys */  
276
  kw4 = subkey[ctx->nkeys + 1];
277

278
  for (i = ctx->nkeys - 8; i > 0; i -= 8)
279
    {
280
281
282
283
      subkey[i+6] ^= kw4;
      subkey[i+4] ^= kw4;
      subkey[i+2] ^= kw4;
      kw4 ^= (kw4 & ~subkey[i]) << 32;
284
      dw = (kw4 & subkey[i]) >> 32; kw4 ^= ROTL32(1, dw);      
285
286
287
288
289
290
291
292
    }

  subkey[6] ^= kw4;
  subkey[4] ^= kw4;
  subkey[2] ^= kw4;
  subkey[0] ^= kw4;

  /* key XOR is end of F-function */
293
  ctx->keys[0] = subkey[0] ^ subkey[2];
294
  ctx->keys[1] = subkey[3];
295

296
297
298
299
  ctx->keys[2] = subkey[2] ^ subkey[4];
  ctx->keys[3] = subkey[3] ^ subkey[5];
  ctx->keys[4] = subkey[4] ^ subkey[6];
  ctx->keys[5] = subkey[5] ^ subkey[7];
300

301
  for (i = 8; i < ctx->nkeys; i += 8)
302
    {
303
304
      tl = (subkey[i+2] >> 32) ^ (subkey[i+2] & ~subkey[i]);
      dw = tl & (subkey[i] >> 32);
305
      tr = subkey[i+2] ^ ROTL32(1, dw);
306
      ctx->keys[i-2] = subkey[i-2] ^ ( ((uint64_t) tl << 32) | tr);
307

308
309
      ctx->keys[i-1] = subkey[i];
      ctx->keys[i] = subkey[i+1];
310
311
312

      tl = (subkey[i-1] >> 32) ^ (subkey[i-1] & ~subkey[i+1]);
      dw = tl & (subkey[i+1] >> 32);
313
      tr = subkey[i-1] ^ ROTL32(1, dw);
314
      ctx->keys[i+1] = subkey[i+3] ^ ( ((uint64_t) tl << 32) | tr);
315

316
317
318
319
      ctx->keys[i+2] = subkey[i+2] ^ subkey[i+4];
      ctx->keys[i+3] = subkey[i+3] ^ subkey[i+5];
      ctx->keys[i+4] = subkey[i+4] ^ subkey[i+6];
      ctx->keys[i+5] = subkey[i+5] ^ subkey[i+7];
320
    }
321
322
  ctx->keys[i-2] = subkey[i-2];
  ctx->keys[i-1] = subkey[i] ^ subkey[i-1];
323
324
325
326
327
328
329
330
331
332
333
334
335

#if !HAVE_NATIVE_64_BIT
  for (i = 0; i < ctx->nkeys; i += 8)
    {
      /* apply the inverse of the last half of F-function */
      CAMELLIA_F_HALF_INV(ctx->keys[i+1]);
      CAMELLIA_F_HALF_INV(ctx->keys[i+2]);
      CAMELLIA_F_HALF_INV(ctx->keys[i+3]);
      CAMELLIA_F_HALF_INV(ctx->keys[i+4]);
      CAMELLIA_F_HALF_INV(ctx->keys[i+5]);
      CAMELLIA_F_HALF_INV(ctx->keys[i+6]);
    }
#endif
336
}