yarrow256.c 6.19 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/* yarrow256.c
 *
 * The yarrow pseudo-randomness generator.
 */

/* nettle, low-level cryptographics library
 *
 * Copyright (C) 2001 Niels Mller
 *  
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
 * The nettle library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with the nettle library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA.
 */

#include "yarrow.h"

#include <assert.h>
#include <string.h>

/* Parameters */

/* An upper limit on the entropy (in bits) in one octet of sample
 * data. */
#define YARROW_MULTIPLIER 4

37
38
39
40
41
42
43
44
45
/* Entropy threshold for reseeding from the fast pool */
#define YARROW_FAST_THRESHOLD 100

/* Entropy threshold for reseeding from the fast pool */
#define YARROW_SLOW_THRESHOLD 160

/* Number of sources that must exceed the threshold for slow reseed */
#define YARROW_SLOW_K 2

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
/* Entropy estimates sticks to this value, it is treated as infinity
 * in calculations. It should fit comfortably in an uint32_t, to avoid
 * overflows. */
#define YARROW_MAX_ENTROPY 0x100000

void
yarrow256_init(struct yarrow256_ctx *ctx,
	       int n,
	       struct yarrow_source *s)
{
  sha256_init(&ctx->pools[0]);
  sha256_init(&ctx->pools[1]);

  ctx->seeded = 0;

  ctx->nsources = n;
  ctx->sources = s;
}

65
66
67
68
69
70
71
72
73
74
75
/* NOTE: The SHA-256 digest size equals the AES key size, so we need
 * no "size adaptor". We also use P_t = 0, i.e. we don't currently try
 * to make reseeding computationally expensive. */

static void
yarrow_fast_reseed(struct yarrow256_ctx *ctx)
{
  uint8_t digest[SHA256_DIGEST_SIZE];
  
  unsigned i;

Niels Möller's avatar
Niels Möller committed
76
  /* FIXME: Mixin the current key! */
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
  sha256_final(&ctx->pools[YARROW_FAST]);
  sha256_digest(&ctx->pools[YARROW_FAST], sizeof(digest), digest);
  sha256_init(&ctx->pools[YARROW_FAST]);
  
  aes_set_key(&ctx->key, sizeof(digest), digest);

  /* Derive new counter value */
  memset(ctx->counter, 0, sizeof(ctx->counter));
  aes_encrypt(&ctx->key, sizeof(ctx->counter), ctx->counter, ctx->counter);
  
  /* Reset estimates. */
  for (i = 0; i<ctx->nsources; i++)
    ctx->sources[i].estimate[YARROW_FAST] = 0;
}

static void
yarrow_slow_reseed(struct yarrow256_ctx *ctx)
{
  uint8_t digest[SHA256_DIGEST_SIZE];
  unsigned i;

  /* Get digest of the slow pool*/
  
  sha256_final(&ctx->pools[YARROW_SLOW]);
  sha256_digest(&ctx->pools[YARROW_SLOW], sizeof(digest), digest);
  sha256_init(&ctx->pools[YARROW_SLOW]);

  /* Feed it into the fast pool */
  sha256_update(&ctx->pools[YARROW_SLOW], sizeof(digest), digest);

  yarrow_fast_reseed(ctx);
  
  /* Reset estimates. */
  for (i = 0; i<ctx->nsources; i++)
    ctx->sources[i].estimate[YARROW_SLOW] = 0;
}

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
void
yarrow256_update(struct yarrow256_ctx *ctx,
		 unsigned source_index, unsigned entropy,
		 unsigned length, const uint8_t *data)
{
  enum yarrow_pool_id current;
  struct yarrow_source *source;
  
  assert(source_index < ctx->nsources);

  if (!length)
    /* Nothing happens */
    return;

  source = &ctx->sources[source_index];
  
  if (!ctx->seeded)
    /* While seeding, use the slow pool */
    current = YARROW_SLOW;
  else
    {
      current = source->next;
      source->next = !source->next;
    }

  sha256_update(&ctx->pools[current], length, data);
 
  /* NOTE: We should be careful to avoid overflows in the estimates. */
  if (source->estimate[current] < YARROW_MAX_ENTROPY)
    {
      if (entropy > YARROW_MAX_ENTROPY)
	entropy = YARROW_MAX_ENTROPY;

      if ( (length < (YARROW_MAX_ENTROPY / YARROW_MULTIPLIER))
	   && (entropy > YARROW_MULTIPLIER * length) )
	entropy = YARROW_MULTIPLIER * length;

      /* FIXME: Calling a more sophisticated estimater should be done
       * here. */

      entropy += source->estimate[current];
      if (entropy > YARROW_MAX_ENTROPY)
	entropy = YARROW_MAX_ENTROPY;

      source->estimate[current] = entropy;
    }

  /* Check for seed/reseed */
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
  switch(current)
    {
    case YARROW_FAST:
      if (source->estimate[YARROW_FAST] >= YARROW_FAST_THRESHOLD)
	yarrow_fast_reseed(ctx);
      break;
    case YARROW_SLOW:
      {
	/* FIXME: This is somewhat inefficient. It would be better to
	 * either maintain the count, or do this loop only if the
	 * current source just crossed the threshold. */
	unsigned k, i;
	for (i = k = 0; i < ctx->nsources; i++)
	  if (ctx->sources[i].estimate[YARROW_SLOW] >= YARROW_SLOW_THRESHOLD)
	    k++;

	if (k >= YARROW_SLOW_K)
	  {
	    yarrow_slow_reseed(ctx);
	    ctx->seeded = 1;
	  }
      }
    }
185
186
187
188
189
190
191
192
}

static void
yarrow_generate_block(struct yarrow256_ctx *ctx,
		      uint8_t *block)
{
  unsigned i;
  
193
  aes_encrypt(&ctx->key, sizeof(ctx->counter), block, ctx->counter);
194

195
196
197
  /* Increment counter, treating it as a big-endian number. This is
   * machine independent, and follows appendix B of the NIST
   * specification of cipher modes of operation.
198
   *
199
   * We could keep a representation of thy counter as 4 32-bit values,
200
201
   * and write entire words (in big-endian byteorder) into the counter
   * block, whenever they change. */
202
  for (i = sizeof(ctx->counter); i--; )
203
204
205
206
207
208
209
    {
      if (++ctx->counter[i])
	break;
    }
}

static void
210
yarrow_gate(struct yarrow256_ctx *ctx)
211
{
212
213
  uint8_t key[AES_MAX_KEY_SIZE];
  unsigned i;
214

215
216
  for (i = 0; i < sizeof(key); i+= AES_BLOCK_SIZE)
    yarrow_generate_block(ctx, key + i);
217

218
  aes_set_key(&ctx->key, sizeof(key), key);
219
220
221
222
223
224
225
226
227
}

void
yarrow256_random(struct yarrow256_ctx *ctx, unsigned length, uint8_t *dst)
{
  assert(ctx->seeded);

  while (length > AES_BLOCK_SIZE)
    {
228
      yarrow_generate_block(ctx, dst);
229
230
231
232
233
      dst += AES_BLOCK_SIZE;
      length -= AES_BLOCK_SIZE;
    }
  if (length)
    {
234
235
      uint8_t buffer[AES_BLOCK_SIZE];
      
236
      assert(length < AES_BLOCK_SIZE);
237
238
      yarrow_generate_block(ctx, buffer);
      memcpy(dst, buffer, length);
239
    }
240
  yarrow_gate(ctx);
241
}