eccdata.c 27 KB
Newer Older
1
2
3
4
/* eccdata.c

   Generate compile time constant (but machine dependent) tables.

5
   Copyright (C) 2013, 2014 Niels Möller
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

   This file is part of GNU Nettle.

   GNU Nettle is free software: you can redistribute it and/or
   modify it under the terms of either:

     * the GNU Lesser General Public License as published by the Free
       Software Foundation; either version 3 of the License, or (at your
       option) any later version.

   or

     * the GNU General Public License as published by the Free
       Software Foundation; either version 2 of the License, or (at your
       option) any later version.

   or both in parallel, as here.

   GNU Nettle is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received copies of the GNU General Public License and
   the GNU Lesser General Public License along with this program.  If
   not, see http://www.gnu.org/licenses/.
*/
33

34
/* Development of Nettle's ECC support was funded by the .SE Internet Fund. */
35
36
37
38
39
40

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

41
#include "mini-gmp.c"
42

43
/* Affine coordinates, for simplicity. Infinity point, i.e., te
44
   neutral group element, is represented using the is_zero flag. */
45
46
struct ecc_point
{
47
  int is_zero;
48
49
50
51
  mpz_t x;
  mpz_t y;
};

52
53
54
55
56
57
58
enum ecc_type
  {
    /* y^2 = x^3 - 3x + b (mod p) */
    ECC_TYPE_WEIERSTRASS,
    /* y^2 = x^3 + b x^2 + x */
    ECC_TYPE_MONTGOMERY
  };
59
60
61
62
63
64
65

struct ecc_curve
{
  unsigned bit_size;
  unsigned pippenger_k;
  unsigned pippenger_c;

66
67
  enum ecc_type type;

68
69
70
71
72
73
74
75
  /* Prime */
  mpz_t p;
  mpz_t b;

  /* Curve order */
  mpz_t q;
  struct ecc_point g;

76
77
78
79
80
81
82
83
84
  /* Non-zero if we want elements represented as point s(u, v) on an
     equivalent Edwards curve, using

      u = t x / y
      v = (x-1) / (x+1)
  */
  int use_edwards;
  mpz_t t;

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
  /* Table for pippenger's algorithm.
     Element

       i 2^c + j_0 + j_1 2 + j_2 2^2 + ... + j_{c-1} 2^{c-1}

     holds

       2^{ikc} ( j_0 + j_1 2^k + j_2 2^{2k} + ... + j_{c-1} 2^{(c-1)k}) g
   */
  mp_size_t table_size;
  struct ecc_point *table;

  /* If non-NULL, holds 2g, 3g, 4g */
  struct ecc_point *ref;
};

static void
ecc_init (struct ecc_point *p)
{
  mpz_init (p->x);
  mpz_init (p->y);
}

static void
ecc_clear (struct ecc_point *p)
{
  mpz_clear (p->x);
  mpz_clear (p->y);
}

static int
ecc_zero_p (const struct ecc_point *p)
{
118
  return p->is_zero;
119
120
121
122
123
}

static int
ecc_equal_p (const struct ecc_point *p, const struct ecc_point *q)
{
124
125
  return p->is_zero ? q->is_zero
    : !q->is_zero && mpz_cmp (p->x, q->x) == 0 && mpz_cmp (p->y, q->y) == 0;
126
127
128
129
130
}

static void
ecc_set_zero (struct ecc_point *r)
{
131
  r->is_zero = 1;
132
133
134
135
136
}

static void
ecc_set (struct ecc_point *r, const struct ecc_point *p)
{
137
  r->is_zero = p->is_zero;
138
139
140
141
  mpz_set (r->x, p->x);
  mpz_set (r->y, p->y);
}

142
/* Needs to support in-place operation. */
143
144
145
146
147
148
149
150
151
152
static void
ecc_dup (const struct ecc_curve *ecc,
	 struct ecc_point *r, const struct ecc_point *p)
{
  if (ecc_zero_p (p))
    ecc_set_zero (r);

  else
    {
      mpz_t m, t, x, y;
153

154
155
156
157
158
159
160
161
162
      mpz_init (m);
      mpz_init (t);
      mpz_init (x);
      mpz_init (y);

      /* m = (2 y)^-1 */
      mpz_mul_ui (m, p->y, 2);
      mpz_invert (m, m, ecc->p);

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
      switch (ecc->type)
	{
	case ECC_TYPE_WEIERSTRASS:
	  /* t = 3 (x^2 - 1) * m */
	  mpz_mul (t, p->x, p->x);
	  mpz_mod (t, t, ecc->p);
	  mpz_sub_ui (t, t, 1);
	  mpz_mul_ui (t, t, 3);
	  break;
	case ECC_TYPE_MONTGOMERY:
	  /* t = (3 x^2 + 2 b x + 1) m = [x(3x+2b)+1] m */
	  mpz_mul_ui (t, ecc->b, 2);
	  mpz_addmul_ui (t, p->x, 3);
	  mpz_mul (t, t, p->x);
	  mpz_mod (t, t, ecc->p);
	  mpz_add_ui (t, t, 1);
	  break;
	}
181
      mpz_mul (t, t, m);
182
      mpz_mod (t, t, ecc->p);
183
184
185

      /* x' = t^2 - 2 x */
      mpz_mul (x, t, t);
Niels Möller's avatar
Niels Möller committed
186
      mpz_submul_ui (x, p->x, 2);
187
188
189
      if (ecc->type == ECC_TYPE_MONTGOMERY)
	mpz_sub (x, x, ecc->b);

190
191
192
193
194
195
196
197
      mpz_mod (x, x, ecc->p);

      /* y' = (x - x') * t - y */
      mpz_sub (y, p->x, x);
      mpz_mul (y, y, t);
      mpz_sub (y, y, p->y);
      mpz_mod (y, y, ecc->p);

198
      r->is_zero = 0;
199
200
      mpz_swap (x, r->x);
      mpz_swap (y, r->y);
201

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
      mpz_clear (m);
      mpz_clear (t);
      mpz_clear (x);
      mpz_clear (y);
    }
}

static void
ecc_add (const struct ecc_curve *ecc,
	 struct ecc_point *r, const struct ecc_point *p, const struct ecc_point *q)
{
  if (ecc_zero_p (p))
    ecc_set (r, q);

  else if (ecc_zero_p (q))
    ecc_set (r, p);

  else if (mpz_cmp (p->x, q->x) == 0)
    {
      if (mpz_cmp (p->y, q->y) == 0)
	ecc_dup (ecc, r, p);
      else
	ecc_set_zero (r);
    }
  else
    {
      mpz_t s, t, x, y;
      mpz_init (s);
      mpz_init (t);
      mpz_init (x);
      mpz_init (y);

      /* t = (q_y - p_y) / (q_x - p_x) */
      mpz_sub (t, q->x, p->x);
      mpz_invert (t, t, ecc->p);
      mpz_sub (s, q->y, p->y);
      mpz_mul (t, t, s);
      mpz_mod (t, t, ecc->p);

      /* x' = t^2 - p_x - q_x */
      mpz_mul (x, t, t);
      mpz_sub (x, x, p->x);
      mpz_sub (x, x, q->x);
245
246
247
      /* This appears to be the only difference between formulas. */
      if (ecc->type == ECC_TYPE_MONTGOMERY)
	mpz_sub (x, x, ecc->b);
248
249
250
251
252
253
254
255
      mpz_mod (x, x, ecc->p);

      /* y' = (x - x') * t - y */
      mpz_sub (y, p->x, x);
      mpz_mul (y, y, t);
      mpz_sub (y, y, p->y);
      mpz_mod (y, y, ecc->p);

256
      r->is_zero = 0;
257
258
259
260
261
262
263
264
265
266
267
268
269
270
      mpz_swap (x, r->x);
      mpz_swap (y, r->y);

      mpz_clear (s);
      mpz_clear (t);
      mpz_clear (x);
      mpz_clear (y);
    }
}

static void 
ecc_mul_binary (const struct ecc_curve *ecc,
		struct ecc_point *r, const mpz_t n, const struct ecc_point *p)
{
271
272
273
  /* Avoid the mp_bitcnt_t type for compatibility with older GMP
     versions. */
  unsigned k;
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

  assert (r != p);
  assert (mpz_sgn (n) > 0);

  ecc_set (r, p);

  /* Index of highest one bit */
  for (k = mpz_sizeinbase (n, 2) - 1; k-- > 0; )
    {
      ecc_dup (ecc, r, r);
      if (mpz_tstbit (n, k))
	ecc_add (ecc, r, r, p);
    }  
}

static struct ecc_point *
ecc_alloc (size_t n)
{
  struct ecc_point *p = malloc (n * sizeof(*p));
  size_t i;

  if (!p)
    {
      fprintf (stderr, "Virtual memory exhausted.\n");
      exit (EXIT_FAILURE);
    }
  for (i = 0; i < n; i++)
    ecc_init (&p[i]);

  return p;
}

static void
ecc_set_str (struct ecc_point *p,
	     const char *x, const char *y)
{
310
  p->is_zero = 0;
311
312
313
314
315
  mpz_set_str (p->x, x, 16);
  mpz_set_str (p->y, y, 16);  
}

static void
316
ecc_curve_init_str (struct ecc_curve *ecc, enum ecc_type type,
317
		    const char *p, const char *b, const char *q,
318
319
		    const char *gx, const char *gy,
		    const char *t)
320
{
321
322
  ecc->type = type;

323
324
325
326
327
328
329
330
331
332
333
  mpz_init_set_str (ecc->p, p, 16);
  mpz_init_set_str (ecc->b, b, 16);
  mpz_init_set_str (ecc->q, q, 16);
  ecc_init (&ecc->g);
  ecc_set_str (&ecc->g, gx, gy);

  ecc->pippenger_k = 0;
  ecc->pippenger_c = 0;
  ecc->table = NULL;

  ecc->ref = NULL;
334
335
336
337
338
339

  mpz_init (ecc->t);

  ecc->use_edwards = (t != NULL);
  if (ecc->use_edwards)
    mpz_set_str (ecc->t, t, 16);
340
341
342
343
344
345
346
347
}

static void
ecc_curve_init (struct ecc_curve *ecc, unsigned bit_size)
{
  switch (bit_size)
    {
    case 192:      
348
      ecc_curve_init_str (ecc, ECC_TYPE_WEIERSTRASS,
349
350
351
352
353
354
355
356
357
358
359
360
361
362
			  /* p = 2^{192} - 2^{64} - 1 */
			  "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE"
			  "FFFFFFFFFFFFFFFF",

			  "64210519e59c80e70fa7e9ab72243049"
			  "feb8deecc146b9b1", 

			  "ffffffffffffffffffffffff99def836"
			  "146bc9b1b4d22831",

			  "188da80eb03090f67cbf20eb43a18800"
			  "f4ff0afd82ff1012",

			  "07192b95ffc8da78631011ed6b24cdd5"
363
364
			  "73f977a11e794811",
			  NULL);
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
      ecc->ref = ecc_alloc (3);
      ecc_set_str (&ecc->ref[0], /* 2 g */
		   "dafebf5828783f2ad35534631588a3f629a70fb16982a888",
		   "dd6bda0d993da0fa46b27bbc141b868f59331afa5c7e93ab");
      
      ecc_set_str (&ecc->ref[1], /* 3 g */
		   "76e32a2557599e6edcd283201fb2b9aadfd0d359cbb263da",
		   "782c37e372ba4520aa62e0fed121d49ef3b543660cfd05fd");

      ecc_set_str (&ecc->ref[2], /* 4 g */
		   "35433907297cc378b0015703374729d7a4fe46647084e4ba",
		   "a2649984f2135c301ea3acb0776cd4f125389b311db3be32");

      break;
    case 224:
380
      ecc_curve_init_str (ecc, ECC_TYPE_WEIERSTRASS,
381
382
383
384
385
386
387
388
389
390
391
392
393
394
			  /* p = 2^{224} - 2^{96} + 1 */
			  "ffffffffffffffffffffffffffffffff"
			  "000000000000000000000001",

			  "b4050a850c04b3abf54132565044b0b7"
			  "d7bfd8ba270b39432355ffb4",

			  "ffffffffffffffffffffffffffff16a2"
			  "e0b8f03e13dd29455c5c2a3d",

			  "b70e0cbd6bb4bf7f321390b94a03c1d3"
			  "56c21122343280d6115c1d21",

			  "bd376388b5f723fb4c22dfe6cd4375a0"
395
396
			  "5a07476444d5819985007e34",
			  NULL);
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

      ecc->ref = ecc_alloc (3);
      ecc_set_str (&ecc->ref[0], /* 2 g */
		   "706a46dc76dcb76798e60e6d89474788d16dc18032d268fd1a704fa6",
		   "1c2b76a7bc25e7702a704fa986892849fca629487acf3709d2e4e8bb");
      
      ecc_set_str (&ecc->ref[1], /* 3 g */
		   "df1b1d66a551d0d31eff822558b9d2cc75c2180279fe0d08fd896d04",
		   "a3f7f03cadd0be444c0aa56830130ddf77d317344e1af3591981a925");

      ecc_set_str (&ecc->ref[2], /* 4 g */
		   "ae99feebb5d26945b54892092a8aee02912930fa41cd114e40447301",
		   "482580a0ec5bc47e88bc8c378632cd196cb3fa058a7114eb03054c9");

      break;
    case 256:
413
      ecc_curve_init_str (ecc, ECC_TYPE_WEIERSTRASS,
414
415
416
417
418
419
420
421
422
423
424
425
426
427
			  /* p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1 */
			  "FFFFFFFF000000010000000000000000"
			  "00000000FFFFFFFFFFFFFFFFFFFFFFFF",

			  "5AC635D8AA3A93E7B3EBBD55769886BC"
			  "651D06B0CC53B0F63BCE3C3E27D2604B",

			  "FFFFFFFF00000000FFFFFFFFFFFFFFFF"
			  "BCE6FAADA7179E84F3B9CAC2FC632551",

			  "6B17D1F2E12C4247F8BCE6E563A440F2"
			  "77037D812DEB33A0F4A13945D898C296",

			  "4FE342E2FE1A7F9B8EE7EB4A7C0F9E16"
428
429
			  "2BCE33576B315ECECBB6406837BF51F5",
			  NULL);
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

      ecc->ref = ecc_alloc (3);
      ecc_set_str (&ecc->ref[0], /* 2 g */
		   "7cf27b188d034f7e8a52380304b51ac3c08969e277f21b35a60b48fc47669978",
		   "7775510db8ed040293d9ac69f7430dbba7dade63ce982299e04b79d227873d1");
      
      ecc_set_str (&ecc->ref[1], /* 3 g */
		   "5ecbe4d1a6330a44c8f7ef951d4bf165e6c6b721efada985fb41661bc6e7fd6c",
		   "8734640c4998ff7e374b06ce1a64a2ecd82ab036384fb83d9a79b127a27d5032");

      ecc_set_str (&ecc->ref[2], /* 4 g */
		   "e2534a3532d08fbba02dde659ee62bd0031fe2db785596ef509302446b030852",
		   "e0f1575a4c633cc719dfee5fda862d764efc96c3f30ee0055c42c23f184ed8c6");

      break;
    case 384:
446
      ecc_curve_init_str (ecc, ECC_TYPE_WEIERSTRASS,
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
			  /* p = 2^{384} - 2^{128} - 2^{96} + 2^{32} - 1 */
			  "ffffffffffffffffffffffffffffffff"
			  "fffffffffffffffffffffffffffffffe"
			  "ffffffff0000000000000000ffffffff",
			  
			  "b3312fa7e23ee7e4988e056be3f82d19"
			  "181d9c6efe8141120314088f5013875a"
			  "c656398d8a2ed19d2a85c8edd3ec2aef",
			  
			  "ffffffffffffffffffffffffffffffff"
			  "ffffffffffffffffc7634d81f4372ddf"
			  "581a0db248b0a77aecec196accc52973",
			  
			  "aa87ca22be8b05378eb1c71ef320ad74"
			  "6e1d3b628ba79b9859f741e082542a38"
			  "5502f25dbf55296c3a545e3872760ab7",
			  
			  "3617de4a96262c6f5d9e98bf9292dc29"
			  "f8f41dbd289a147ce9da3113b5f0b8c0"
466
467
			  "0a60b1ce1d7e819d7a431d7c90ea0e5f",
			  NULL);
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483

      ecc->ref = ecc_alloc (3);
      ecc_set_str (&ecc->ref[0], /* 2 g */
		   "8d999057ba3d2d969260045c55b97f089025959a6f434d651d207d19fb96e9e4fe0e86ebe0e64f85b96a9c75295df61",
		   "8e80f1fa5b1b3cedb7bfe8dffd6dba74b275d875bc6cc43e904e505f256ab4255ffd43e94d39e22d61501e700a940e80");

      ecc_set_str (&ecc->ref[1], /* 3 g */
		   "77a41d4606ffa1464793c7e5fdc7d98cb9d3910202dcd06bea4f240d3566da6b408bbae5026580d02d7e5c70500c831",
		   "c995f7ca0b0c42837d0bbe9602a9fc998520b41c85115aa5f7684c0edc111eacc24abd6be4b5d298b65f28600a2f1df1");

      ecc_set_str (&ecc->ref[2], /* 4 g */
		   "138251cd52ac9298c1c8aad977321deb97e709bd0b4ca0aca55dc8ad51dcfc9d1589a1597e3a5120e1efd631c63e1835",
		   "cacae29869a62e1631e8a28181ab56616dc45d918abc09f3ab0e63cf792aa4dced7387be37bba569549f1c02b270ed67");

      break;
    case 521:
484
      ecc_curve_init_str (ecc, ECC_TYPE_WEIERSTRASS,
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
			  "1ff" /* p = 2^{521} - 1 */
			  "ffffffffffffffffffffffffffffffff"
			  "ffffffffffffffffffffffffffffffff"
			  "ffffffffffffffffffffffffffffffff"
			  "ffffffffffffffffffffffffffffffff",

			  "051"
			  "953eb9618e1c9a1f929a21a0b68540ee"
			  "a2da725b99b315f3b8b489918ef109e1"
			  "56193951ec7e937b1652c0bd3bb1bf07"
			  "3573df883d2c34f1ef451fd46b503f00",

			  "1ff"
			  "ffffffffffffffffffffffffffffffff"
			  "fffffffffffffffffffffffffffffffa"
			  "51868783bf2f966b7fcc0148f709a5d0"
			  "3bb5c9b8899c47aebb6fb71e91386409",

			  "c6"
			  "858e06b70404e9cd9e3ecb662395b442"
			  "9c648139053fb521f828af606b4d3dba"
			  "a14b5e77efe75928fe1dc127a2ffa8de"
			  "3348b3c1856a429bf97e7e31c2e5bd66",

			  "118"
			  "39296a789a3bc0045c8a5fb42c7d1bd9"
			  "98f54449579b446817afbd17273e662c"
			  "97ee72995ef42640c550b9013fad0761"
513
514
			  "353c7086a272c24088be94769fd16650",
			  NULL);
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

      ecc->ref = ecc_alloc (3);
      ecc_set_str (&ecc->ref[0], /* 2 g */
		   "433c219024277e7e682fcb288148c282747403279b1ccc06352c6e5505d769be97b3b204da6ef55507aa104a3a35c5af41cf2fa364d60fd967f43e3933ba6d783d",
		   "f4bb8cc7f86db26700a7f3eceeeed3f0b5c6b5107c4da97740ab21a29906c42dbbb3e377de9f251f6b93937fa99a3248f4eafcbe95edc0f4f71be356d661f41b02");
      
      ecc_set_str (&ecc->ref[1], /* 3 g */
		   "1a73d352443de29195dd91d6a64b5959479b52a6e5b123d9ab9e5ad7a112d7a8dd1ad3f164a3a4832051da6bd16b59fe21baeb490862c32ea05a5919d2ede37ad7d",
		   "13e9b03b97dfa62ddd9979f86c6cab814f2f1557fa82a9d0317d2f8ab1fa355ceec2e2dd4cf8dc575b02d5aced1dec3c70cf105c9bc93a590425f588ca1ee86c0e5");

      ecc_set_str (&ecc->ref[2], /* 4 g */
		   "35b5df64ae2ac204c354b483487c9070cdc61c891c5ff39afc06c5d55541d3ceac8659e24afe3d0750e8b88e9f078af066a1d5025b08e5a5e2fbc87412871902f3",
		   "82096f84261279d2b673e0178eb0b4abb65521aef6e6e32e1b5ae63fe2f19907f279f283e54ba385405224f750a95b85eebb7faef04699d1d9e21f47fc346e4d0d");

      break;
530
531
532
    case 255:
      /* curve25519, y^2 = x^3 + 486662 x^2 + x (mod p), with p = 2^{255} - 19.

533
	 According to http://cr.yp.to/papers.html#newelliptic, this
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
	 is birationally equivalent to the Edwards curve

	   x^2 + y^2 = 1 + (121665/121666) x^2 y^2 (mod p).

	 And since the constant is not a square, the Edwards formulas
	 should be "complete", with no special cases needed for
	 doubling, neutral element, negatives, etc.

	 Generator is x = 9, with y coordinate
	 14781619447589544791020593568409986887264606134616475288964881837755586237401,
	 according to

	   x = Mod(9, 2^255-19); sqrt(x^3 + 486662*x^2 + x)

	 in PARI/GP. Also, in PARI notation,

	   curve25519 = Mod([0, 486662, 0, 1, 0], 2^255-19)
       */
      ecc_curve_init_str (ecc, ECC_TYPE_MONTGOMERY,
			  "7fffffffffffffffffffffffffffffff"
			  "ffffffffffffffffffffffffffffffed",
			  "76d06",
556
557
558
559
			  /* Order of the subgroup is 2^252 + q_0, where
			     q_0 = 27742317777372353535851937790883648493,
			     125 bits.
			  */
560
561
562
563
564
565
566
			  "10000000000000000000000000000000"
			  "14def9dea2f79cd65812631a5cf5d3ed",
			  "9",
			  /* y coordinate from PARI/GP
			     x = Mod(9, 2^255-19); sqrt(x^3 + 486662*x^2 + x)
			  */
			  "20ae19a1b8a086b4e01edd2c7748d14c"
567
568
569
570
571
572
			  "923d4d7e6d7c61b229e9c5a27eced3d9",
			  /* (121665/121666) mod p, from PARI/GP
			     c = Mod(121665, p); c / (c+1)
			  */
			  "2dfc9311d490018c7338bf8688861767"
			  "ff8ff5b2bebe27548a14b235eca6874a");
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
      ecc->ref = ecc_alloc (3);
      ecc_set_str (&ecc->ref[0], /* 2 g */
		   "20d342d51873f1b7d9750c687d157114"
		   "8f3f5ced1e350b5c5cae469cdd684efb",
		   "13b57e011700e8ae050a00945d2ba2f3"
		   "77659eb28d8d391ebcd70465c72df563");
      ecc_set_str (&ecc->ref[1], /* 3 g */
		   "1c12bc1a6d57abe645534d91c21bba64"
		   "f8824e67621c0859c00a03affb713c12",
		   "2986855cbe387eaeaceea446532c338c"
		   "536af570f71ef7cf75c665019c41222b");

      ecc_set_str (&ecc->ref[2], /* 4 g */
		   "79ce98b7e0689d7de7d1d074a15b315f"
		   "fe1805dfcd5d2a230fee85e4550013ef",
		   "75af5bf4ebdc75c8fe26873427d275d7"
		   "3c0fb13da361077a565539f46de1c30");

      break;

593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
    default:
      fprintf (stderr, "No known curve for size %d\n", bit_size);
      exit(EXIT_FAILURE);     
    }
  ecc->bit_size = bit_size;
}

static void
ecc_pippenger_precompute (struct ecc_curve *ecc, unsigned k, unsigned c)
{
  unsigned p = (ecc->bit_size + k-1) / k;
  unsigned M = (p + c-1)/c;
  unsigned i, j;

  ecc->pippenger_k = k;
  ecc->pippenger_c = c;
  ecc->table_size = M << c;
  ecc->table = ecc_alloc (ecc->table_size);
  
  /* Compute the first 2^c entries */
  ecc_set_zero (&ecc->table[0]);
  ecc_set (&ecc->table[1], &ecc->g);

  for (j = 2; j < (1U<<c); j <<= 1)
    {
      /* T[j] = 2^k T[j/2] */
      ecc_dup (ecc, &ecc->table[j], &ecc->table[j/2]);
      for (i = 1; i < k; i++)
	ecc_dup (ecc, &ecc->table[j], &ecc->table[j]);

      for (i = 1; i < j; i++)
	ecc_add (ecc, &ecc->table[j + i], &ecc->table[j], &ecc->table[i]);
    }
  for (j = 1<<c; j < ecc->table_size; j++)
    {
      /* T[j] = 2^{kc} T[j-2^c] */
      ecc_dup (ecc, &ecc->table[j], &ecc->table[j - (1<<c)]);
      for (i = 1; i < k*c; i++)
	ecc_dup (ecc, &ecc->table[j], &ecc->table[j]);
    }
}

static void
ecc_mul_pippenger (const struct ecc_curve *ecc,
		   struct ecc_point *r, const mpz_t n_input)
{
  mpz_t n;
  unsigned k, c;
  unsigned i, j;
  unsigned bit_rows;

  mpz_init (n);
  
  mpz_mod (n, n_input, ecc->q);
  ecc_set_zero (r);

  k = ecc->pippenger_k;
  c = ecc->pippenger_c;

  bit_rows = (ecc->bit_size + k - 1) / k;

  for (i = k; i-- > 0; )
    {
      ecc_dup (ecc, r, r);
      for (j = 0; j * c < bit_rows; j++)
	{
	  unsigned bits;
	  mp_size_t bit_index;
	  
	  /* Extract c bits of the exponent, stride k, starting at i + kcj, ending at
	    i + k (cj + c - 1)*/
	  for (bits = 0, bit_index = i + k*(c*j+c); bit_index > i + k*c*j; )
	    {
	      bit_index -= k;
	      bits = (bits << 1) | mpz_tstbit (n, bit_index);
	    }

	  ecc_add (ecc, r, r, &ecc->table[(j << c) | bits]);
	}
    }
  mpz_clear (n);
}

676
677
678
679
680
681
682
683
684
685
686
687
688
689
static void
ecc_point_out (FILE *f, const struct ecc_point *p)
{
  if (p->is_zero)
    fprintf (f, "zero");
  else
    {
	fprintf (stderr, "(");
	mpz_out_str (stderr, 16, p->x);
	fprintf (stderr, ",\n     ");
	mpz_out_str (stderr, 16, (p)->y);
	fprintf (stderr, ")");
    }
}
690
691
692
693
694
#define ASSERT_EQUAL(p, q) do {						\
    if (!ecc_equal_p (p, q))						\
      {									\
	fprintf (stderr, "%s:%d: ASSERT_EQUAL (%s, %s) failed.\n",	\
		 __FILE__, __LINE__, #p, #q);				\
695
696
697
698
699
	fprintf (stderr, "p = ");					\
	ecc_point_out (stderr, (p));					\
	fprintf (stderr, "\nq = ");					\
	ecc_point_out (stderr, (q));					\
	fprintf (stderr, "\n");						\
700
701
702
703
704
705
706
707
708
	abort();							\
      }									\
  } while (0)

#define ASSERT_ZERO(p) do {						\
    if (!ecc_zero_p (p))						\
      {									\
	fprintf (stderr, "%s:%d: ASSERT_ZERO (%s) failed.\n",		\
		 __FILE__, __LINE__, #p);				\
709
710
711
	fprintf (stderr, "p = ");					\
	ecc_point_out (stderr, (p));					\
	fprintf (stderr, "\n");						\
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
	abort();							\
      }									\
  } while (0)

static void
ecc_curve_check (const struct ecc_curve *ecc)
{
  struct ecc_point p, q;
  mpz_t n;

  ecc_init (&p);
  ecc_init (&q);
  mpz_init (n);

  ecc_dup (ecc, &p, &ecc->g);
  if (ecc->ref)
    ASSERT_EQUAL (&p, &ecc->ref[0]);
  else
730
731
732
733
734
735
736
    {
      fprintf (stderr, "g2 = ");
      mpz_out_str (stderr, 16, p.x);
      fprintf (stderr, "\n     ");
      mpz_out_str (stderr, 16, p.y);
      fprintf (stderr, "\n");
    }
737
738
739
740
  ecc_add (ecc, &q, &p, &ecc->g);
  if (ecc->ref)
    ASSERT_EQUAL (&q, &ecc->ref[1]);
  else
741
742
743
744
745
746
747
    {
      fprintf (stderr, "g3 = ");
      mpz_out_str (stderr, 16, q.x);
      fprintf (stderr, "\n     ");
      mpz_out_str (stderr, 16, q.y);
      fprintf (stderr, "\n");
    }
748
749
750
751
752

  ecc_add (ecc, &q, &q, &ecc->g);
  if (ecc->ref)
    ASSERT_EQUAL (&q, &ecc->ref[2]);
  else
753
754
755
756
757
758
759
    {
      fprintf (stderr, "g4 = ");
      mpz_out_str (stderr, 16, q.x);
      fprintf (stderr, "\n     ");
      mpz_out_str (stderr, 16, q.y);
      fprintf (stderr, "\n");
    }
760
761
762
763
764

  ecc_dup (ecc, &q, &p);
  if (ecc->ref)
    ASSERT_EQUAL (&q, &ecc->ref[2]);
  else
765
766
767
768
769
770
771
    {
      fprintf (stderr, "g4 = ");
      mpz_out_str (stderr, 16, q.x);
      fprintf (stderr, "\n     ");
      mpz_out_str (stderr, 16, q.y);
      fprintf (stderr, "\n");
    }
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810

  ecc_mul_binary (ecc, &p, ecc->q, &ecc->g);
  ASSERT_ZERO (&p);

  ecc_mul_pippenger (ecc, &q, ecc->q);
  ASSERT_ZERO (&q);

  ecc_clear (&p);
  ecc_clear (&q);
  mpz_clear (n);
}

static void
output_digits (const mpz_t x,
	       unsigned size, unsigned bits_per_limb)
{  
  mpz_t t;
  mpz_t mask;
  mpz_t limb;
  unsigned i;
  const char *suffix;

  mpz_init (t);
  mpz_init (mask);
  mpz_init (limb);

  mpz_setbit (mask, bits_per_limb);
  mpz_sub_ui (mask, mask, 1);

  suffix = bits_per_limb > 32 ? "ULL" : "UL";

  mpz_init_set (t, x);

  for (i = 0; i < size; i++)
    {
      if ( (i % 8) == 0)
	printf("\n ");
      
      mpz_and (limb, mask, t);
811
812
813
      printf (" 0x");
      mpz_out_str (stdout, 16, limb);
      printf ("%s,", suffix);
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
      mpz_tdiv_q_2exp (t, t, bits_per_limb);
    }

  mpz_clear (t);
  mpz_clear (mask);
  mpz_clear (limb);
}

static void
output_bignum (const char *name, const mpz_t x,
	       unsigned size, unsigned bits_per_limb)
{  
  printf ("static const mp_limb_t %s[%d] = {", name, size);
  output_digits (x, size, bits_per_limb);
  printf("\n};\n");
}

static void
832
833
output_point (const char *name, const struct ecc_curve *ecc,
	      const struct ecc_point *p, int use_redc,
834
835
	      unsigned size, unsigned bits_per_limb)
{
836
  mpz_t x, y, t;
837

838
839
  mpz_init (x);
  mpz_init (y);
840
  mpz_init (t);
841
 
842
843
844
  if (name)
    printf("static const mp_limb_t %s[%u] = {", name, 2*size);

845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
  if (ecc->use_edwards)
    {
      if (ecc_zero_p (p))
	{
	  mpz_set_si (x, 0);
	  mpz_set_si (y, 1);
	}
      else if (!mpz_sgn (p->y))
	{
	  assert (!mpz_sgn (p->x));
	  mpz_set_si (x, 0);
	  mpz_set_si (y, -1);
	}
      else
	{
	  mpz_invert (x, p->y, ecc->p);
	  mpz_mul (x, x, p->x);
	  mpz_mul (x, x, ecc->t);	 
	  mpz_mod (x, x, ecc->p);

	  mpz_sub_ui (y, p->x, 1);
	  mpz_add_ui (t, p->x, 1);
	  mpz_invert (t, t, ecc->p);
	  mpz_mul (y, y, t);
	  mpz_mod (y, y, ecc->p);
	}
    }
  else
    {
      mpz_set (x, p->x);
      mpz_set (y, p->y);
    }
  if (use_redc)
    {
      mpz_mul_2exp (x, x, size * bits_per_limb);
      mpz_mod (x, x, ecc->p);
      mpz_mul_2exp (y, y, size * bits_per_limb);
      mpz_mod (y, y, ecc->p);
    }
884
      
885
886
  output_digits (x, size, bits_per_limb);
  output_digits (y, size, bits_per_limb);
887
888
889
890

  if (name)
    printf("\n};\n");

891
892
  mpz_clear (x);
  mpz_clear (y);
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
  mpz_clear (t);
}

static unsigned
output_modulo (const char *name, const mpz_t x,
	       unsigned size, unsigned bits_per_limb)
{
  mpz_t mod;
  unsigned bits;

  mpz_init (mod);

  mpz_setbit (mod, bits_per_limb * size);
  mpz_mod (mod, mod, x);

  bits = mpz_sizeinbase (mod, 2);
  output_bignum (name, mod, size, bits_per_limb);
  
  mpz_clear (mod);
  return bits;
}

static void
output_curve (const struct ecc_curve *ecc, unsigned bits_per_limb)
{
  unsigned limb_size = (ecc->bit_size + bits_per_limb - 1)/bits_per_limb;
  unsigned i;
  unsigned bits;
  int redc_limbs;
  mpz_t t;

  mpz_init (t);

  printf ("/* For NULL. */\n#include <stddef.h>\n");

  printf ("#define ECC_LIMB_SIZE %u\n", limb_size);
  printf ("#define ECC_PIPPENGER_K %u\n", ecc->pippenger_k);
  printf ("#define ECC_PIPPENGER_C %u\n", ecc->pippenger_c);

  output_bignum ("ecc_p", ecc->p, limb_size, bits_per_limb);
  output_bignum ("ecc_b", ecc->b, limb_size, bits_per_limb);
  output_bignum ("ecc_q", ecc->q, limb_size, bits_per_limb);
935
936
  output_point ("ecc_g", ecc, &ecc->g, 0, limb_size, bits_per_limb);
  output_point ("ecc_redc_g", ecc, &ecc->g, 1, limb_size, bits_per_limb);
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
  
  bits = output_modulo ("ecc_Bmodp", ecc->p, limb_size, bits_per_limb);
  printf ("#define ECC_BMODP_SIZE %u\n",
	  (bits + bits_per_limb - 1) / bits_per_limb);
  bits = output_modulo ("ecc_Bmodq", ecc->q, limb_size, bits_per_limb);
  printf ("#define ECC_BMODQ_SIZE %u\n",
	  (bits + bits_per_limb - 1) / bits_per_limb);

  if (ecc->bit_size < limb_size * bits_per_limb)
    {
      int shift;

      mpz_set_ui (t, 0);
      mpz_setbit (t, ecc->bit_size);
      mpz_sub (t, t, ecc->p);      
      output_bignum ("ecc_Bmodp_shifted", t, limb_size, bits_per_limb);

      shift = limb_size * bits_per_limb - ecc->bit_size;
      if (shift > 0)
	{
	  /* Check condition for reducing hi limbs. If s is the
	     normalization shift and n is the bit size (so that s + n
	     = limb_size * bite_per_limb), then we need

	       (2^n - 1) + (2^s - 1) (2^n - p) < 2p

	     or equivalently,

	       2^s (2^n - p) <= p

	     To a allow a carry limb to be added in at the same time,
	     substitute s+1 for s.
	  */
	  /* FIXME: For ecdsa verify, we actually need the stricter
	     inequality < 2 q. */
	  mpz_mul_2exp (t, t, shift + 1);
	  if (mpz_cmp (t, ecc->p) > 0)
	    {
	      fprintf (stderr, "Reduction condition failed for %u-bit curve.\n",
		       ecc->bit_size);
	      exit (EXIT_FAILURE);
	    }
	}
      mpz_set_ui (t, 0);
      mpz_setbit (t, ecc->bit_size);
      mpz_sub (t, t, ecc->q);      
      output_bignum ("ecc_Bmodq_shifted", t, limb_size, bits_per_limb);      
    }
  else
    {
      printf ("#define ecc_Bmodp_shifted ecc_Bmodp\n");
      printf ("#define ecc_Bmodq_shifted ecc_Bmodq\n");
    }

  mpz_add_ui (t, ecc->p, 1);
  mpz_fdiv_q_2exp (t, t, 1);
  output_bignum ("ecc_pp1h", t, limb_size, bits_per_limb);      

  mpz_add_ui (t, ecc->q, 1);
  mpz_fdiv_q_2exp (t, t, 1);
  output_bignum ("ecc_qp1h", t, limb_size, bits_per_limb);  
  
  /* Trailing zeros in p+1 correspond to trailing ones in p. */
  redc_limbs = mpz_scan0 (ecc->p, 0) / bits_per_limb;
  if (redc_limbs > 0)
    {
      mpz_add_ui (t, ecc->p, 1);
      mpz_fdiv_q_2exp (t, t, redc_limbs * bits_per_limb);
      output_bignum ("ecc_redc_ppm1", t, limb_size - redc_limbs, bits_per_limb);
    }
  else
    {    
      /* Trailing zeros in p-1 correspond to zeros just above the low
	 bit of p */
      redc_limbs = mpz_scan1 (ecc->p, 1) / bits_per_limb;
      if (redc_limbs > 0)
	{
	  printf ("#define ecc_redc_ppm1 (ecc_p + %d)\n",
		  redc_limbs);
	  redc_limbs = -redc_limbs;
	}
      else
	printf ("#define ecc_redc_ppm1 NULL\n");
    }
  printf ("#define ECC_REDC_SIZE %d\n", redc_limbs);

  printf ("#if USE_REDC\n");
  printf ("#define ecc_unit ecc_Bmodp\n");

  printf ("static const mp_limb_t ecc_table[%lu] = {",
	 (unsigned long) (2*ecc->table_size * limb_size));
  for (i = 0; i < ecc->table_size; i++)
1029
    output_point (NULL, ecc, &ecc->table[i], 1, limb_size, bits_per_limb);
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040

  printf("\n};\n");

  printf ("#else\n");

  mpz_init_set_ui (t, 1);
  output_bignum ("ecc_unit", t, limb_size, bits_per_limb);
  
  printf ("static const mp_limb_t ecc_table[%lu] = {",
	 (unsigned long) (2*ecc->table_size * limb_size));
  for (i = 0; i < ecc->table_size; i++)
1041
    output_point (NULL, ecc, &ecc->table[i], 0, limb_size, bits_per_limb);
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073

  printf("\n};\n");
  printf ("#endif\n");
  
  mpz_clear (t);
}

int
main (int argc, char **argv)
{
  struct ecc_curve ecc;

  if (argc < 4)
    {
      fprintf (stderr, "Usage: %s CURVE-BITS K C [BITS-PER-LIMB]\n", argv[0]);
      return EXIT_FAILURE;
    }

  ecc_curve_init (&ecc, atoi(argv[1]));

  ecc_pippenger_precompute (&ecc, atoi(argv[2]), atoi(argv[3]));

  fprintf (stderr, "Table size: %lu entries\n",
	   (unsigned long) ecc.table_size);

  ecc_curve_check (&ecc);

  if (argc > 4)
    output_curve (&ecc, atoi(argv[4]));

  return EXIT_SUCCESS;
}