ecc-25519.c 6.35 KB
Newer Older
Niels Möller's avatar
Niels Möller committed
1
/* ecc-25519.c
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

   Arithmetic and tables for curve25519,

   Copyright (C) 2014 Niels Möller

   This file is part of GNU Nettle.

   GNU Nettle is free software: you can redistribute it and/or
   modify it under the terms of either:

     * the GNU Lesser General Public License as published by the Free
       Software Foundation; either version 3 of the License, or (at your
       option) any later version.

   or

     * the GNU General Public License as published by the Free
       Software Foundation; either version 2 of the License, or (at your
       option) any later version.

   or both in parallel, as here.

   GNU Nettle is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received copies of the GNU General Public License and
   the GNU Lesser General Public License along with this program.  If
   not, see http://www.gnu.org/licenses/.
*/

#if HAVE_CONFIG_H
# include "config.h"
#endif

#include "ecc-internal.h"

#define USE_REDC 0

#include "ecc-25519.h"

44
45
46
47
48
49
50
#if HAVE_NATIVE_ecc_25519_modp

#define ecc_25519_modp nettle_ecc_25519_modp
void
ecc_25519_modp (const struct ecc_curve *ecc, mp_limb_t *rp);
#else

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#define HIGH_BITS (GMP_NUMB_BITS * ECC_LIMB_SIZE - 255)

#if HIGH_BITS == 0
#error Unsupported limb size */
#endif

static void
ecc_25519_modp(const struct ecc_curve *ecc UNUSED, mp_limb_t *rp)
{
  mp_limb_t hi, cy;

  cy = mpn_addmul_1 (rp, rp + ECC_LIMB_SIZE, ECC_LIMB_SIZE,
		     (mp_limb_t) 19 << HIGH_BITS);
  hi = rp[ECC_LIMB_SIZE-1];
  cy = (cy << HIGH_BITS) + (hi >> (GMP_NUMB_BITS - HIGH_BITS));
  rp[ECC_LIMB_SIZE-1] = (hi & (GMP_NUMB_MASK >> HIGH_BITS))
    + sec_add_1 (rp, rp, ECC_LIMB_SIZE - 1, 19 * cy);
}

70
71
#endif /* HAVE_NATIVE_ecc_25519_modp */

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/* Needs 2*ecc->size limbs at rp, and 2*ecc->size additional limbs of
   scratch space. No overlap allowed. */
static void
ecc_modp_powm_2kp1 (const struct ecc_curve *ecc,
		    mp_limb_t *rp, const mp_limb_t *xp,
		    unsigned k, mp_limb_t *tp)
{
  if (k & 1)
    {
      ecc_modp_sqr (ecc, tp, xp);
      k--;
    }
  else
    {
      ecc_modp_sqr (ecc, rp, xp);
      ecc_modp_sqr (ecc, tp, rp);
      k -= 2;
    }
  while (k > 0)
    {
      ecc_modp_sqr (ecc, rp, tp);
      ecc_modp_sqr (ecc, tp, rp);
      k -= 2;
    }
  ecc_modp_mul (ecc, rp, tp, xp);
#undef t1
#undef t2
}

/* Compute x such that x^2 = a (mod p). Returns one on success, zero
   on failure. using the e == 2 special case of the Shanks-Tonelli
   algorithm (see http://www.math.vt.edu/people/brown/doc/sqrts.pdf,
   or Henri Cohen, Computational Algebraic Number Theory, 1.5.1.

   NOTE: Not side-channel silent. FIXME: Compute square root in the
   extended field if a isn't a square (mod p)? FIXME: Accept scratch
   space from caller (could allow scratch == rp). */
#if ECC_SQRT_E != 2
#error Broken curve25519 parameters
#endif
int
ecc_25519_sqrt(mp_limb_t *rp, const mp_limb_t *ap)
{
  mp_size_t itch;
  mp_limb_t *scratch;
  int res;
  const struct ecc_curve *ecc = &nettle_curve25519;

  itch = 7*ECC_LIMB_SIZE;
  scratch = gmp_alloc_limbs (itch);

#define t0 scratch
#define a7 (scratch + 2*ECC_LIMB_SIZE)
#define t1 (scratch + 3*ECC_LIMB_SIZE)
#define t2 (scratch + 5*ECC_LIMB_SIZE)
#define scratch_out (scratch + 3*ECC_LIMB_SIZE) /* overlap t1, t2 */

#define xp (scratch + ECC_LIMB_SIZE)
#define bp (scratch + 2*ECC_LIMB_SIZE)

  /* a^{2^252 - 3} = a^{(p-5)/8}, using the addition chain
     2^252 - 3
     = 1 + (2^252-4)
     = 1 + 4 (2^250-1)
     = 1 + 4 (2^125+1)(2^125-1)
     = 1 + 4 (2^125+1)(1+2(2^124-1))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^62-1))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(2^31-1))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^28-1)))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^14+1)(2^14-1)))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^14+1)(2^7+1)(2^7-1)))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^14+1)(2^7+1)(1+2(2^6-1))))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^14+1)(2^7+1)(1+2(2^3+1)*7)))
  */ 
     
  ecc_modp_powm_2kp1 (ecc, t1, ap, 1, t2);  /* a^3 */
  ecc_modp_sqr (ecc, t0, t1);		    /* a^6 */
  ecc_modp_mul (ecc, a7, t0, ap);	    /* a^7 */
  ecc_modp_powm_2kp1 (ecc, t0, a7, 3, t1);  /* a^63 = a^{2^6-1} */
  ecc_modp_sqr (ecc, t1, t0);		    /* a^{2^7-2} */
  ecc_modp_mul (ecc, t0, t1, ap);	    /* a^{2^7-1} */
  ecc_modp_powm_2kp1 (ecc, t1, t0, 7, t2);  /* a^{2^14-1}*/
  ecc_modp_powm_2kp1 (ecc, t0, t1, 14, t2); /* a^{2^28-1} */
  ecc_modp_sqr (ecc, t1, t0);		    /* a^{2^29-2} */
  ecc_modp_sqr (ecc, t2, t1);		    /* a^{2^30-4} */
  ecc_modp_sqr (ecc, t1, t2);		    /* a^{2^31-8} */
  ecc_modp_mul (ecc, t0, t1, a7);	    /* a^{2^31-1} */
  ecc_modp_powm_2kp1 (ecc, t1, t0, 31, t2); /* a^{2^62-1} */  
  ecc_modp_powm_2kp1 (ecc, t0, t1, 62, t2); /* a^{2^124-1}*/
  ecc_modp_sqr (ecc, t1, t0);		    /* a^{2^125-2} */
  ecc_modp_mul (ecc, t0, t1, ap);	    /* a^{2^125-1} */
  ecc_modp_powm_2kp1 (ecc, t1, t0, 125, t2); /* a^{2^250-1} */
  ecc_modp_sqr (ecc, t0, t1);		    /* a^{2^251-2} */
  ecc_modp_sqr (ecc, t1, t0);		    /* a^{2^252-4} */
  ecc_modp_mul (ecc, t0, t1, ap);	    /* a^{2^252-3} */

  /* Compute candidate root x and fudgefactor b. */
  ecc_modp_mul (ecc, xp, t0, ap); /* a^{(p+3)/8 */
  ecc_modp_mul (ecc, bp, t0, xp); /* a^{(p-1)/4} */
  /* Check if b == 1 (mod p) */
  if (mpn_cmp (bp, ecc->p, ECC_LIMB_SIZE) >= 0)
    mpn_sub_n (bp, bp, ecc->p, ECC_LIMB_SIZE);
  if (mpn_cmp (bp, ecc->unit, ECC_LIMB_SIZE) == 0)
    {
      mpn_copyi (rp, xp, ECC_LIMB_SIZE);
      res = 1;
    }
  else
    {
      mpn_add_1 (bp, bp, ECC_LIMB_SIZE, 1);
      if (mpn_cmp (bp, ecc->p, ECC_LIMB_SIZE) == 0)
	{
	  ecc_modp_mul (&nettle_curve25519, bp, xp, ecc_sqrt_z);
	  mpn_copyi (rp, bp, ECC_LIMB_SIZE);
	  res = 1;
	}
      else
	res = 0;
    }
  gmp_free_limbs (scratch, itch);
  return res;
#undef t0
#undef t1
#undef t2
#undef a7
#undef xp
#undef bp
#undef scratch_out
}
201

202
203
204
205
206
207
208
209
210
211
const struct ecc_curve nettle_curve25519 =
{
  255,
  ECC_LIMB_SIZE,
  ECC_BMODP_SIZE,
  ECC_BMODQ_SIZE,
  0, /* No redc */
  0,
  ECC_PIPPENGER_K,
  ECC_PIPPENGER_C,
212
213
214
215
216
217

  ecc_25519_modp,
  NULL,
  ecc_25519_modp,
  NULL,

218
  ecc_p,
219
  ecc_d, /* Use the Edwards curve constant. */
220
221
222
  ecc_q,
  ecc_g,
  ecc_redc_g,
223
  ecc_edwards,
224
225
226
227
228
229
230
231
232
233
  ecc_Bmodp,
  ecc_Bmodp_shifted,
  ecc_pp1h,
  ecc_redc_ppm1,
  ecc_unit,
  ecc_Bmodq,
  ecc_Bmodq_shifted,
  ecc_qp1h,
  ecc_table
};