yarrow256.c 9.59 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/* yarrow256.c
 *
 * The yarrow pseudo-randomness generator.
 */

/* nettle, low-level cryptographics library
 *
 * Copyright (C) 2001 Niels Mller
 *  
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
 * The nettle library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with the nettle library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA.
 */

26
27
28
#if HAVE_CONFIG_H
# include "config.h"
#endif
29

30
#include <assert.h>
31
#include <stdlib.h>
32
33
#include <string.h>

34
35
36
37
#include "yarrow.h"

#include "macros.h"

38
39
40
41
42
#ifndef YARROW_DEBUG
#define YARROW_DEBUG 0
#endif

#if YARROW_DEBUG
Niels Möller's avatar
Niels Möller committed
43
44
45
#include <stdio.h>
#endif

46
47
48
49
50
51
/* Parameters */

/* An upper limit on the entropy (in bits) in one octet of sample
 * data. */
#define YARROW_MULTIPLIER 4

52
53
54
55
56
57
58
59
60
/* Entropy threshold for reseeding from the fast pool */
#define YARROW_FAST_THRESHOLD 100

/* Entropy threshold for reseeding from the fast pool */
#define YARROW_SLOW_THRESHOLD 160

/* Number of sources that must exceed the threshold for slow reseed */
#define YARROW_SLOW_K 2

61
62
63
64
65
/* The number of iterations when reseeding, P_t in the yarrow paper.
 * Should be chosen so that reseeding takes on the order of 0.1-1
 * seconds. */
#define YARROW_RESEED_ITERATIONS 1500

66
67
68
69
70
/* Entropy estimates sticks to this value, it is treated as infinity
 * in calculations. It should fit comfortably in an uint32_t, to avoid
 * overflows. */
#define YARROW_MAX_ENTROPY 0x100000

71
72
73
74
75
76
77
78
/* Forward declarations */

static void
yarrow_fast_reseed(struct yarrow256_ctx *ctx);

static void
yarrow_gate(struct yarrow256_ctx *ctx);

79
80
void
yarrow256_init(struct yarrow256_ctx *ctx,
81
	       unsigned n,
82
83
	       struct yarrow_source *s)
{
84
85
  unsigned i;

86
87
  sha256_init(&ctx->pools[0]);
  sha256_init(&ctx->pools[1]);
88
  
89
90
  ctx->seeded = 0;

91
92
93
94
95
  /* Not strictly, necessary, but it makes it easier to see if the
   * values are sane. */
  memset(ctx->seed_file, 0, YARROW256_SEED_FILE_SIZE);
  memset(ctx->counter, 0, sizeof(ctx->counter));
  
96
97
  ctx->nsources = n;
  ctx->sources = s;
98
99
100
101
102
103
104
105
106

  for (i = 0; i<n; i++)
    {
      ctx->sources[i].estimate[YARROW_FAST] = 0;
      ctx->sources[i].estimate[YARROW_SLOW] = 0;
      ctx->sources[i].next = YARROW_FAST;
    }
}

107
108
109
void
yarrow256_seed(struct yarrow256_ctx *ctx,
	       unsigned length,
110
	       const uint8_t *seed_file)
111
112
113
114
115
116
117
118
119
120
121
122
123
{
  /* FIXME: Perhaps it's better to use assert ? */
  if (!length)
    return;

  sha256_update(&ctx->pools[YARROW_FAST], length, seed_file);
  yarrow_fast_reseed(ctx);

  ctx->seeded = 1;
}

/* FIXME: Generalize so that it generates a few more blocks at a
 * time. */
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
static void
yarrow_generate_block(struct yarrow256_ctx *ctx,
		      uint8_t *block)
{
  unsigned i;
  
  aes_encrypt(&ctx->key, sizeof(ctx->counter), block, ctx->counter);

  /* Increment counter, treating it as a big-endian number. This is
   * machine independent, and follows appendix B of the NIST
   * specification of cipher modes of operation.
   *
   * We could keep a representation of thy counter as 4 32-bit values,
   * and write entire words (in big-endian byteorder) into the counter
   * block, whenever they change. */
  for (i = sizeof(ctx->counter); i--; )
    {
      if (++ctx->counter[i])
	break;
    }
144
145
}

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
static void
yarrow_iterate(uint8_t *digest)
{
  uint8_t v0[SHA256_DIGEST_SIZE];
  unsigned i;
  
  memcpy(v0, digest, SHA256_DIGEST_SIZE);
  
  /* When hashed inside the loop, i should run from 1 to
   * YARROW_RESEED_ITERATIONS */
  for (i = 0; ++i < YARROW_RESEED_ITERATIONS; )
    {
      uint8_t count[4];
      struct sha256_ctx hash;
  
      sha256_init(&hash);

      /* Hash v_i | v_0 | i */
      WRITE_UINT32(count, i);
      sha256_update(&hash, SHA256_DIGEST_SIZE, digest);
      sha256_update(&hash, sizeof(v0), v0);
      sha256_update(&hash, sizeof(count), count);

      sha256_digest(&hash, SHA256_DIGEST_SIZE, digest);
    }
}

173
/* NOTE: The SHA-256 digest size equals the AES key size, so we need
174
 * no "size adaptor". */
175
176
177
178
179
180

static void
yarrow_fast_reseed(struct yarrow256_ctx *ctx)
{
  uint8_t digest[SHA256_DIGEST_SIZE];
  unsigned i;
181
  
182
#if YARROW_DEBUG
Niels Möller's avatar
Niels Möller committed
183
184
185
  fprintf(stderr, "yarrow_fast_reseed\n");
#endif
  
186
187
188
189
190
191
192
193
194
195
196
  /* We feed two block of output using the current key into the pool
   * before emptying it. */
  if (ctx->seeded)
    {
      uint8_t blocks[AES_BLOCK_SIZE * 2];
      
      yarrow_generate_block(ctx, blocks);
      yarrow_generate_block(ctx, blocks + AES_BLOCK_SIZE);
      sha256_update(&ctx->pools[YARROW_FAST], sizeof(blocks), blocks);
    }
  
197
  sha256_digest(&ctx->pools[YARROW_FAST], sizeof(digest), digest);
198
199
200
201

  /* Iterate */
  yarrow_iterate(digest);

202
  aes_set_encrypt_key(&ctx->key, sizeof(digest), digest);
203
204
205
206
207
208
209
210

  /* Derive new counter value */
  memset(ctx->counter, 0, sizeof(ctx->counter));
  aes_encrypt(&ctx->key, sizeof(ctx->counter), ctx->counter, ctx->counter);
  
  /* Reset estimates. */
  for (i = 0; i<ctx->nsources; i++)
    ctx->sources[i].estimate[YARROW_FAST] = 0;
211
212
213
214
215
216
217

  /* New seed file. */
  /* FIXME: Extract this into a function of its own. */
  for (i = 0; i < sizeof(ctx->seed_file); i+= AES_BLOCK_SIZE)
    yarrow_generate_block(ctx, ctx->seed_file + i);

  yarrow_gate(ctx);
218
219
220
221
222
223
224
225
}

static void
yarrow_slow_reseed(struct yarrow256_ctx *ctx)
{
  uint8_t digest[SHA256_DIGEST_SIZE];
  unsigned i;

226
#if YARROW_DEBUG
Niels Möller's avatar
Niels Möller committed
227
228
229
  fprintf(stderr, "yarrow_slow_reseed\n");
#endif

230
231
232
233
234
  /* Get digest of the slow pool*/
  
  sha256_digest(&ctx->pools[YARROW_SLOW], sizeof(digest), digest);

  /* Feed it into the fast pool */
235
  sha256_update(&ctx->pools[YARROW_FAST], sizeof(digest), digest);
236
237
238
239
240
241
242
243

  yarrow_fast_reseed(ctx);
  
  /* Reset estimates. */
  for (i = 0; i<ctx->nsources; i++)
    ctx->sources[i].estimate[YARROW_SLOW] = 0;
}

244
int
245
246
247
248
249
250
251
252
253
254
255
yarrow256_update(struct yarrow256_ctx *ctx,
		 unsigned source_index, unsigned entropy,
		 unsigned length, const uint8_t *data)
{
  enum yarrow_pool_id current;
  struct yarrow_source *source;
  
  assert(source_index < ctx->nsources);

  if (!length)
    /* Nothing happens */
256
    return 0;
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

  source = &ctx->sources[source_index];
  
  if (!ctx->seeded)
    /* While seeding, use the slow pool */
    current = YARROW_SLOW;
  else
    {
      current = source->next;
      source->next = !source->next;
    }

  sha256_update(&ctx->pools[current], length, data);
 
  /* NOTE: We should be careful to avoid overflows in the estimates. */
  if (source->estimate[current] < YARROW_MAX_ENTROPY)
    {
      if (entropy > YARROW_MAX_ENTROPY)
	entropy = YARROW_MAX_ENTROPY;

      if ( (length < (YARROW_MAX_ENTROPY / YARROW_MULTIPLIER))
	   && (entropy > YARROW_MULTIPLIER * length) )
	entropy = YARROW_MULTIPLIER * length;

Niels Möller's avatar
Niels Möller committed
281
      /* FIXME: Calling a more sophisticated estimator could be done
282
283
284
285
286
287
288
289
290
291
       * here. */

      entropy += source->estimate[current];
      if (entropy > YARROW_MAX_ENTROPY)
	entropy = YARROW_MAX_ENTROPY;

      source->estimate[current] = entropy;
    }

  /* Check for seed/reseed */
292
293
294
  switch(current)
    {
    case YARROW_FAST:
295
#if YARROW_DEBUG
Niels Möller's avatar
Niels Möller committed
296
297
298
299
300
      fprintf(stderr,
              "yarrow256_update: source_index = %d,\n"
              "            fast pool estimate = %d\n",
              source_index, source->estimate[YARROW_FAST]);
#endif
301
302
303
304
305
306
307
308
      if (source->estimate[YARROW_FAST] >= YARROW_FAST_THRESHOLD)
	{
	  yarrow_fast_reseed(ctx);
	  return 1;
	}
      else
	return 0;

309
310
311
312
313
    case YARROW_SLOW:
      {
	/* FIXME: This is somewhat inefficient. It would be better to
	 * either maintain the count, or do this loop only if the
	 * current source just crossed the threshold. */
Niels Möller's avatar
Niels Möller committed
314
        
315
        if (!yarrow256_needed_sources(ctx))
316
317
318
	  {
	    yarrow_slow_reseed(ctx);
	    ctx->seeded = 1;
319
320

	    return 1;
321
	  }
322
323
	else
	  return 0;
324
      }
325
326
    default:
      abort();
327
    }
328
329
330
}

static void
331
yarrow_gate(struct yarrow256_ctx *ctx)
332
{
333
334
  uint8_t key[AES_MAX_KEY_SIZE];
  unsigned i;
335

336
337
  for (i = 0; i < sizeof(key); i+= AES_BLOCK_SIZE)
    yarrow_generate_block(ctx, key + i);
338

339
  aes_set_encrypt_key(&ctx->key, sizeof(key), key);
340
341
342
343
344
345
346
}

void
yarrow256_random(struct yarrow256_ctx *ctx, unsigned length, uint8_t *dst)
{
  assert(ctx->seeded);

347
  while (length >= AES_BLOCK_SIZE)
348
    {
349
      yarrow_generate_block(ctx, dst);
350
351
352
353
354
      dst += AES_BLOCK_SIZE;
      length -= AES_BLOCK_SIZE;
    }
  if (length)
    {
355
356
      uint8_t buffer[AES_BLOCK_SIZE];
      
357
      assert(length < AES_BLOCK_SIZE);
358
359
      yarrow_generate_block(ctx, buffer);
      memcpy(dst, buffer, length);
360
    }
361
  yarrow_gate(ctx);
362
}
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

int
yarrow256_is_seeded(struct yarrow256_ctx *ctx)
{
  return ctx->seeded;
}

unsigned
yarrow256_needed_sources(struct yarrow256_ctx *ctx)
{
  /* FIXME: This is somewhat inefficient. It would be better to
   * either maintain the count, or do this loop only if the
   * current source just crossed the threshold. */
  unsigned k, i;

  for (i = k = 0; i < ctx->nsources; i++)
    if (ctx->sources[i].estimate[YARROW_SLOW] >= YARROW_SLOW_THRESHOLD)
      k++;

#if YARROW_DEBUG
  fprintf(stderr,
          "yarrow256_needed_sources: source_index = %d,\n"
          "                    slow pool estimate = %d,\n"
          "     number of sources above threshold = %d\n",
          source_index, source->estimate[YARROW_SLOW], k);
#endif
  
  return (k < YARROW_SLOW_K) ? (YARROW_SLOW_K - k) : 0;
}
392
393
394
395
396
397

void
yarrow256_force_reseed(struct yarrow256_ctx *ctx)
{
  yarrow_slow_reseed(ctx);
}