ecc-j-to-a.c 3.01 KB
Newer Older
Niels Möller's avatar
Niels Möller committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/* ecc-j-to-a.c */

/* nettle, low-level cryptographics library
 *
 * Copyright (C) 2013 Niels Möller
 *  
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
 * The nettle library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with the nettle library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
 * MA 02111-1301, USA.
 */

23
/* Development of Nettle's ECC support was funded by the .SE Internet Fund. */
Niels Möller's avatar
Niels Möller committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

#if HAVE_CONFIG_H
# include "config.h"
#endif

#include "ecc.h"
#include "ecc-internal.h"

mp_size_t
ecc_j_to_a_itch (const struct ecc_curve *ecc)
{
  /* Needs 2*ecc->size + scratch for ecc_modq_inv */
  return ECC_J_TO_A_ITCH (ecc->size);
}

void
ecc_j_to_a (const struct ecc_curve *ecc,
	    int flags,
	    mp_limb_t *r, const mp_limb_t *p,
	    mp_limb_t *scratch)
{
#define izp   scratch
#define up   (scratch + ecc->size)
#define iz2p (scratch + ecc->size)
#define iz3p (scratch + 2*ecc->size)
#define tp    scratch

  mp_limb_t cy;

  if (ecc->use_redc)
    {
      /* Set v = (r_z / B^2)^-1,

	 r_x = p_x v^2 / B^3 =  ((v/B * v)/B * p_x)/B
	 r_y = p_y v^3 / B^4 = (((v/B * v)/B * v)/B * p_x)/B

	 Skip the first redc, if we want to stay in Montgomery
	 representation.
      */

      mpn_copyi (up, p + 2*ecc->size, ecc->size);
      mpn_zero (up + ecc->size, ecc->size);
      ecc->redc (ecc, up);
      mpn_zero (up + ecc->size, ecc->size);
      ecc->redc (ecc, up);

      ecc_modp_inv (ecc, izp, up, up + ecc->size);

      if (flags & 1)
	{
	  /* Divide this common factor by B */
	  mpn_copyi (iz3p, izp, ecc->size);
	  mpn_zero (iz3p + ecc->size, ecc->size);
	  ecc->redc (ecc, iz3p);
      
	  ecc_modp_mul (ecc, iz2p, izp, iz3p);
	}
      else
	ecc_modp_sqr (ecc, iz2p, izp);	
    }
  else
    {
      /* Set s = p_z^{-1}, r_x = p_x s^2, r_y = p_y s^3 */

      mpn_copyi (up, p+2*ecc->size, ecc->size); /* p_z */
      ecc_modp_inv (ecc, izp, up, up + ecc->size);

      ecc_modp_sqr (ecc, iz2p, izp);
    }

  ecc_modp_mul (ecc, iz3p, iz2p, p);
  /* ecc_modp (and ecc_modp_mul) may return a value up to 2p - 1, so
     do a conditional subtraction. */
  cy = mpn_sub_n (r, iz3p, ecc->p, ecc->size);
  cnd_copy (cy, r, iz3p, ecc->size);

  if (flags & 2)
    /* Skip y coordinate */
    return;

  ecc_modp_mul (ecc, iz3p, iz2p, izp);
  ecc_modp_mul (ecc, tp, iz3p, p + ecc->size);
  /* And a similar subtraction. */
  cy = mpn_sub_n (r + ecc->size, tp, ecc->p, ecc->size);
  cnd_copy (cy, r + ecc->size, tp, ecc->size);

#undef izp
#undef up
#undef iz2p
#undef iz3p
#undef tp
}