cast128.c 7.81 KB
Newer Older
Niels Möller's avatar
Niels Möller committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/* cast128.c
 *
 * The CAST-128 block cipher.
 */

/*	CAST-128 in C
 *	Written by Steve Reid <sreid@sea-to-sky.net>
 *	100% Public Domain - no warranty
 *	Released 1997.10.11
 */

/* nettle, low-level cryptographics library
 *
 * Copyright (C) 2001 Niels Mller
 *  
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
 * The nettle library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA.
 */

#include "cast128.h"
#include "cast128_sboxes.h"

#include "macros.h"

#include <assert.h>

#define CAST_SMALL_KEY 10
#define CAST_SMALL_ROUNDS 12
#define CAST_FULL_ROUNDS 16

/* Macros to access 8-bit bytes out of a 32-bit word */
#define U8a(x) ( (uint8_t) (x>>24) )
#define U8b(x) ( (uint8_t) ((x>>16)&0xff) )
#define U8c(x) ( (uint8_t) ((x>>8)&0xff) )
#define U8d(x) ( (uint8_t) ((x)&0xff) )

/* Circular left shift */
#define ROL(x, n) ( ((x)<<(n)) | ((x)>>(32-(n))) )

/* CAST-128 uses three different round functions */
#define F1(l, r, i) \
	t = ROL(ctx->keys[i] + r, ctx->keys[i+16]); \
	l ^= ((cast_sbox1[U8a(t)] ^ cast_sbox2[U8b(t)]) \
	 - cast_sbox3[U8c(t)]) + cast_sbox4[U8d(t)];
#define F2(l, r, i) \
	t = ROL(ctx->keys[i] ^ r, ctx->keys[i+16]); \
	l ^= ((cast_sbox1[U8a(t)] - cast_sbox2[U8b(t)]) \
	 + cast_sbox3[U8c(t)]) ^ cast_sbox4[U8d(t)];
#define F3(l, r, i) \
	t = ROL(ctx->keys[i] - r, ctx->keys[i+16]); \
	l ^= ((cast_sbox1[U8a(t)] + cast_sbox2[U8b(t)]) \
	 ^ cast_sbox3[U8c(t)]) - cast_sbox4[U8d(t)];


/***** Encryption Function *****/

void
cast128_encrypt(struct cast128_ctx *ctx,
		unsigned length, uint8_t *dst,
		const uint8_t *src)
{
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
    {
      uint32_t t, l, r;

      /* Get inblock into l,r */
      l = READ_UINT32(src);
      r = READ_UINT32(src+4);

      /* Do the work */
      F1(l, r,  0);
      F2(r, l,  1);
      F3(l, r,  2);
      F1(r, l,  3);
      F2(l, r,  4);
      F3(r, l,  5);
      F1(l, r,  6);
      F2(r, l,  7);
      F3(l, r,  8);
      F1(r, l,  9);
      F2(l, r, 10);
      F3(r, l, 11);
      /* Only do full 16 rounds if key length > 80 bits */
      if (ctx->rounds > 12) {
	F1(l, r, 12);
	F2(r, l, 13);
	F3(l, r, 14);
	F1(r, l, 15);
      }
      /* Put l,r into outblock */
      WRITE_UINT32(dst, r);
      WRITE_UINT32(dst + 4, l);
      /* Wipe clean */
      t = l = r = 0;
    }
}


/***** Decryption Function *****/

void
cast128_decrypt(struct cast128_ctx *ctx,
		unsigned length, uint8_t *dst,
		const uint8_t *src)
{
  FOR_BLOCKS(length, dst, src, CAST128_BLOCK_SIZE)
    {
      uint32_t t, l, r;

      /* Get inblock into l,r */
      r = READ_UINT32(src);
      l = READ_UINT32(src+4);

      /* Do the work */
      /* Only do full 16 rounds if key length > 80 bits */
      if (ctx->rounds > 12) {
	F1(r, l, 15);
	F3(l, r, 14);
	F2(r, l, 13);
	F1(l, r, 12);
      }
      F3(r, l, 11);
      F2(l, r, 10);
      F1(r, l,  9);
      F3(l, r,  8);
      F2(r, l,  7);
      F1(l, r,  6);
      F3(r, l,  5);
      F2(l, r,  4);
      F1(r, l,  3);
      F3(l, r,  2);
      F2(r, l,  1);
      F1(l, r,  0);

      /* Put l,r into outblock */
      WRITE_UINT32(dst, l);
      WRITE_UINT32(dst + 4, r);

      /* Wipe clean */
      t = l = r = 0;
    }
}

/***** Key Schedule *****/

void
cast128_set_key(struct cast128_ctx *ctx,
		unsigned keybytes, const uint8_t *rawkey)
{
  uint32_t t[4], z[4], x[4];
  unsigned i;

  /* Set number of rounds to 12 or 16, depending on key length */
  ctx->rounds = (keybytes <= CAST_SMALL_KEY)
    ? CAST_SMALL_ROUNDS : CAST_FULL_ROUNDS;

  /* Copy key to workspace x */
  for (i = 0; i < 4; i++) {
    x[i] = 0;
    if ((i*4+0) < keybytes) x[i] = (uint32_t)rawkey[i*4+0] << 24;
    if ((i*4+1) < keybytes) x[i] |= (uint32_t)rawkey[i*4+1] << 16;
    if ((i*4+2) < keybytes) x[i] |= (uint32_t)rawkey[i*4+2] << 8;
    if ((i*4+3) < keybytes) x[i] |= (uint32_t)rawkey[i*4+3];
  }
  /* Generate 32 subkeys, four at a time */
  for (i = 0; i < 32; i+=4) {
    switch (i & 4) {
    case 0:
      t[0] = z[0] = x[0] ^ cast_sbox5[U8b(x[3])]
	^ cast_sbox6[U8d(x[3])] ^ cast_sbox7[U8a(x[3])]
	^ cast_sbox8[U8c(x[3])] ^ cast_sbox7[U8a(x[2])];
      t[1] = z[1] = x[2] ^ cast_sbox5[U8a(z[0])]
	^ cast_sbox6[U8c(z[0])] ^ cast_sbox7[U8b(z[0])]
	^ cast_sbox8[U8d(z[0])] ^ cast_sbox8[U8c(x[2])];
      t[2] = z[2] = x[3] ^ cast_sbox5[U8d(z[1])]
	^ cast_sbox6[U8c(z[1])] ^ cast_sbox7[U8b(z[1])]
	^ cast_sbox8[U8a(z[1])] ^ cast_sbox5[U8b(x[2])];
      t[3] = z[3] = x[1] ^ cast_sbox5[U8c(z[2])] ^
	cast_sbox6[U8b(z[2])] ^ cast_sbox7[U8d(z[2])]
	^ cast_sbox8[U8a(z[2])] ^ cast_sbox6[U8d(x[2])];
      break;
    case 4:
      t[0] = x[0] = z[2] ^ cast_sbox5[U8b(z[1])]
	^ cast_sbox6[U8d(z[1])] ^ cast_sbox7[U8a(z[1])]
	^ cast_sbox8[U8c(z[1])] ^ cast_sbox7[U8a(z[0])];
      t[1] = x[1] = z[0] ^ cast_sbox5[U8a(x[0])]
	^ cast_sbox6[U8c(x[0])] ^ cast_sbox7[U8b(x[0])]
	^ cast_sbox8[U8d(x[0])] ^ cast_sbox8[U8c(z[0])];
      t[2] = x[2] = z[1] ^ cast_sbox5[U8d(x[1])]
	^ cast_sbox6[U8c(x[1])] ^ cast_sbox7[U8b(x[1])]
	^ cast_sbox8[U8a(x[1])] ^ cast_sbox5[U8b(z[0])];
      t[3] = x[3] = z[3] ^ cast_sbox5[U8c(x[2])]
	^ cast_sbox6[U8b(x[2])] ^ cast_sbox7[U8d(x[2])]
	^ cast_sbox8[U8a(x[2])] ^ cast_sbox6[U8d(z[0])];
      break;
    }
    switch (i & 12) {
    case 0:
    case 12:
      ctx->keys[i+0] = cast_sbox5[U8a(t[2])] ^ cast_sbox6[U8b(t[2])]
	^ cast_sbox7[U8d(t[1])] ^ cast_sbox8[U8c(t[1])];
      ctx->keys[i+1] = cast_sbox5[U8c(t[2])] ^ cast_sbox6[U8d(t[2])]
	^ cast_sbox7[U8b(t[1])] ^ cast_sbox8[U8a(t[1])];
      ctx->keys[i+2] = cast_sbox5[U8a(t[3])] ^ cast_sbox6[U8b(t[3])]
	^ cast_sbox7[U8d(t[0])] ^ cast_sbox8[U8c(t[0])];
      ctx->keys[i+3] = cast_sbox5[U8c(t[3])] ^ cast_sbox6[U8d(t[3])]
	^ cast_sbox7[U8b(t[0])] ^ cast_sbox8[U8a(t[0])];
      break;
    case 4:
    case 8:
      ctx->keys[i+0] = cast_sbox5[U8d(t[0])] ^ cast_sbox6[U8c(t[0])]
	^ cast_sbox7[U8a(t[3])] ^ cast_sbox8[U8b(t[3])];
      ctx->keys[i+1] = cast_sbox5[U8b(t[0])] ^ cast_sbox6[U8a(t[0])]
	^ cast_sbox7[U8c(t[3])] ^ cast_sbox8[U8d(t[3])];
      ctx->keys[i+2] = cast_sbox5[U8d(t[1])] ^ cast_sbox6[U8c(t[1])]
	^ cast_sbox7[U8a(t[2])] ^ cast_sbox8[U8b(t[2])];
      ctx->keys[i+3] = cast_sbox5[U8b(t[1])] ^ cast_sbox6[U8a(t[1])]
	^ cast_sbox7[U8c(t[2])] ^ cast_sbox8[U8d(t[2])];
      break;
    }
    switch (i & 12) {
    case 0:
      ctx->keys[i+0] ^= cast_sbox5[U8c(z[0])];
      ctx->keys[i+1] ^= cast_sbox6[U8c(z[1])];
      ctx->keys[i+2] ^= cast_sbox7[U8b(z[2])];
      ctx->keys[i+3] ^= cast_sbox8[U8a(z[3])];
      break;
    case 4:
      ctx->keys[i+0] ^= cast_sbox5[U8a(x[2])];
      ctx->keys[i+1] ^= cast_sbox6[U8b(x[3])];
      ctx->keys[i+2] ^= cast_sbox7[U8d(x[0])];
      ctx->keys[i+3] ^= cast_sbox8[U8d(x[1])];
      break;
    case 8:
      ctx->keys[i+0] ^= cast_sbox5[U8b(z[2])];
      ctx->keys[i+1] ^= cast_sbox6[U8a(z[3])];
      ctx->keys[i+2] ^= cast_sbox7[U8c(z[0])];
      ctx->keys[i+3] ^= cast_sbox8[U8c(z[1])];
      break;
    case 12:
      ctx->keys[i+0] ^= cast_sbox5[U8d(x[0])];
      ctx->keys[i+1] ^= cast_sbox6[U8d(x[1])];
      ctx->keys[i+2] ^= cast_sbox7[U8a(x[2])];
      ctx->keys[i+3] ^= cast_sbox8[U8b(x[3])];
      break;
    }
    if (i >= 16) {
      ctx->keys[i+0] &= 31;
      ctx->keys[i+1] &= 31;
      ctx->keys[i+2] &= 31;
      ctx->keys[i+3] &= 31;
    }
  }
  /* Wipe clean */
  for (i = 0; i < 4; i++) {
    t[i] = x[i] = z[i] = 0;
  }
}