camellia-crypt-internal.c 5.29 KB
Newer Older
1 2 3 4 5
/* camellia-crypt-internal.c
 *
 * Copyright (C) 2006,2007
 * NTT (Nippon Telegraph and Telephone Corporation).
 *
Niels Möller's avatar
Niels Möller committed
6
 * Copyright (C) 2010 Niels Möller
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */

/*
 * Algorithm Specification 
 *  http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html
 */

/* Based on camellia.c ver 1.2.0, see
   http://info.isl.ntt.co.jp/crypt/eng/camellia/dl/camellia-LGPL-1.2.0.tar.gz.
 */
#if HAVE_CONFIG_H
# include "config.h"
#endif

#include <assert.h>
36
#include <limits.h>
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

#include "camellia-internal.h"

#include "macros.h"

#define CAMELLIA_FL(x, k) do {			\
  uint32_t __xl, __xr, __kl, __kr, __t;		\
  __xl = (x) >> 32;				\
  __xr = (x) & 0xffffffff;			\
  __kl = (k) >> 32;				\
  __kr = (k) & 0xffffffff;			\
  __t = __xl & __kl;				\
  __xr ^= ROL32(1, __t);			\
  __xl ^= (__xr | __kr);			\
  (x) = ((uint64_t) __xl << 32) | __xr;		\
} while (0)

#define CAMELLIA_FLINV(x, k) do {		\
  uint32_t __xl, __xr, __kl, __kr, __t;		\
  __xl = (x) >> 32;				\
  __xr = (x) & 0xffffffff;			\
  __kl = (k) >> 32;				\
  __kr = (k) & 0xffffffff;			\
  __xl ^= (__xr | __kr);			\
  __t = __xl & __kl;				\
  __xr ^= ROL32(1, __t);			\
  (x) = ((uint64_t) __xl << 32) | __xr;		\
} while (0)

66
#if HAVE_NATIVE_64_BIT
67 68 69
#define CAMELLIA_ROUNDSM(T, x, k, y) do {			\
    uint32_t __il, __ir;					\
    __ir							\
70 71 72 73
      = T->sp1110[(x) & 0xff]					\
      ^ T->sp0222[((x) >> 24) & 0xff]				\
      ^ T->sp3033[((x) >> 16) & 0xff]				\
      ^ T->sp4404[((x) >> 8) & 0xff];				\
74 75
    /* ir == (t6^t7^t8),(t5^t7^t8),(t5^t6^t8),(t5^t6^t7) */	\
    __il							\
76 77 78 79
      = T->sp1110[ (x) >> 56]					\
      ^ T->sp0222[((x) >> 48) & 0xff]				\
      ^ T->sp3033[((x) >> 40) & 0xff]				\
      ^ T->sp4404[((x) >> 32) & 0xff];				\
80 81 82
    /* il == (t1^t3^t4),(t1^t2^t4),(t1^t2^t3),(t2^t3^t4) */	\
    __ir ^= __il;						\
    /* ir == (t1^t3^t4^t6^t7^t8),(t1^t2^t4^t5^t7^t8),		\
83 84
       (t1^t2^t3^t5^t6^t8),(t2^t3^t4^t5^t6^t7)			\
       == y1,y2,y3,y4 */					\
85 86 87 88
    __il = ROL32(24, __il);					\
    /* il == (t2^t3^t4),(t1^t3^t4),(t1^t2^t4),(t1^t2^t3) */	\
    __il ^= __ir;						\
    /* il == (t1^t2^t6^t7^t8),(t2^t3^t5^t7^t8),			\
89 90
       (t3^t4^t5^t6^t8),(t1^t4^t5^t6^t7)			\
       == y5,y6,y7,y8 */					\
91
    y ^= (k);							\
92 93
    y ^= ((uint64_t) __ir << 32) | __il;			\
  } while (0)
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
#else /* !HAVE_NATIVE_64_BIT */
#define CAMELLIA_ROUNDSM(T, x, k, y) do {			\
    uint32_t __il, __ir;					\
    __ir							\
      = T->sp1110[(x) & 0xff]					\
      ^ T->sp0222[((x) >> 24) & 0xff]				\
      ^ T->sp3033[((x) >> 16) & 0xff]				\
      ^ T->sp4404[((x) >> 8) & 0xff];				\
    /* ir == (t6^t7^t8),(t5^t7^t8),(t5^t6^t8),(t5^t6^t7) */	\
    __il							\
      = T->sp1110[ (x) >> 56]					\
      ^ T->sp0222[((x) >> 48) & 0xff]				\
      ^ T->sp3033[((x) >> 40) & 0xff]				\
      ^ T->sp4404[((x) >> 32) & 0xff];				\
    /* il == (t1^t3^t4),(t1^t2^t4),(t1^t2^t3),(t2^t3^t4) */	\
    __il ^= (k) >> 32;						\
    __ir ^= (k) & 0xffffffff;					\
    __ir ^= __il;						\
    /* ir == (t1^t3^t4^t6^t7^t8),(t1^t2^t4^t5^t7^t8),		\
       (t1^t2^t3^t5^t6^t8),(t2^t3^t4^t5^t6^t7)			\
       == y1,y2,y3,y4 */					\
    __il = ROL32(24, __il);					\
    /* il == (t2^t3^t4),(t1^t3^t4),(t1^t2^t4),(t1^t2^t3) */	\
    __il ^= __ir;						\
    /* il == (t1^t2^t6^t7^t8),(t2^t3^t5^t7^t8),			\
       (t3^t4^t5^t6^t8),(t1^t4^t5^t6^t7)			\
       == y5,y6,y7,y8 */					\
    y ^= ((uint64_t) __ir << 32) | __il;			\
  } while (0)
#endif
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

void
_camellia_crypt(const struct camellia_ctx *ctx,
		const struct camellia_table *T,
		unsigned length, uint8_t *dst,
		const uint8_t *src)
{
  FOR_BLOCKS(length, dst, src, CAMELLIA_BLOCK_SIZE)
    {
      uint64_t i0,i1;
      unsigned i;

      i0 = READ_UINT64(src);
      i1 = READ_UINT64(src +  8);
      
      /* pre whitening but absorb kw2*/
      i0 ^= ctx->keys[0];

      /* main iteration */

144 145 146 147 148 149
      CAMELLIA_ROUNDSM(T, i0,ctx->keys[1], i1);
      CAMELLIA_ROUNDSM(T, i1,ctx->keys[2], i0);
      CAMELLIA_ROUNDSM(T, i0,ctx->keys[3], i1);
      CAMELLIA_ROUNDSM(T, i1,ctx->keys[4], i0);
      CAMELLIA_ROUNDSM(T, i0,ctx->keys[5], i1);
      CAMELLIA_ROUNDSM(T, i1,ctx->keys[6], i0);
150
      
151
      for (i = 0; i < ctx->nkeys - 8; i+= 8)
152
	{
153 154
	  CAMELLIA_FL(i0, ctx->keys[i+7]);
	  CAMELLIA_FLINV(i1, ctx->keys[i+8]);
155
	  
156 157 158 159 160 161
	  CAMELLIA_ROUNDSM(T, i0,ctx->keys[i+9], i1);
	  CAMELLIA_ROUNDSM(T, i1,ctx->keys[i+10], i0);
	  CAMELLIA_ROUNDSM(T, i0,ctx->keys[i+11], i1);
	  CAMELLIA_ROUNDSM(T, i1,ctx->keys[i+12], i0);
	  CAMELLIA_ROUNDSM(T, i0,ctx->keys[i+13], i1);
	  CAMELLIA_ROUNDSM(T, i1,ctx->keys[i+14], i0);
162 163 164
	}

      /* post whitening but kw4 */
165
      i1 ^= ctx->keys[i+7];
166 167 168 169 170

      WRITE_UINT64(dst     , i1);
      WRITE_UINT64(dst +  8, i0);
    }
}