twofish.c 15.9 KB
Newer Older
1
2
/* twofish.c
 *
3
 * The twofish block cipher.
4
 */
5

6
/* twofish - An implementation of the twofish cipher.
Ruud de Rooij's avatar
Ruud de Rooij committed
7
8
9
10
11
 * Copyright (C) 1999 Ruud de Rooij <ruud@debian.org>
 *
 * Modifications for lsh, integrated testing
 * Copyright (C) 1999 J.H.M. Dassen (Ray) <jdassen@wi.LeidenUniv.nl>
 *
12
13
 * Integrated with the nettle library,
 * Copyright (C) 2001 Niels Mller
Ruud de Rooij's avatar
Ruud de Rooij committed
14
15
 */

16
17
18
19
20
21
22
/* nettle, low-level cryptographics library
 *
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
Niels Möller's avatar
Niels Möller committed
23
 * The nettle Library is distributed in the hope that it will be useful, but
24
25
26
27
28
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
Niels Möller's avatar
Niels Möller committed
29
 * along with the nettle library; see the file COPYING.LIB.  If not, write to
30
31
 * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA.
Ruud de Rooij's avatar
Ruud de Rooij committed
32
33
 */

34
35
36
#if HAVE_CONFIG_H
# include "config.h"
#endif
37
38

#include <assert.h>
Niels Möller's avatar
Niels Möller committed
39
#include <string.h>
40

41
42
43
44
#include "twofish.h"

#include "macros.h"

Ruud de Rooij's avatar
Ruud de Rooij committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
/* Bitwise rotations on 32-bit words.  These are defined as macros that
 * evaluate their argument twice, so do not apply to any expressions with
 * side effects.
 */

#define rol1(x) (((x) << 1) | (((x) & 0x80000000) >> 31))
#define rol8(x) (((x) << 8) | (((x) & 0xFF000000) >> 24))
#define rol9(x) (((x) << 9) | (((x) & 0xFF800000) >> 23))
#define ror1(x) (((x) >> 1) | (((x) & 0x00000001) << 31))

/* ------------------------------------------------------------------------- */

/* The permutations q0 and q1.  These are fixed permutations on 8-bit values.
 * The permutations have been computed using the program generate_q
 * which is distributed along with this file.
 */

62
static const uint8_t q0[] = { 0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76,
Ruud de Rooij's avatar
Ruud de Rooij committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
                     0x9A, 0x92, 0x80, 0x78, 0xE4, 0xDD, 0xD1, 0x38,
                     0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C,
                     0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48,
                     0xF2, 0xD0, 0x8B, 0x30, 0x84, 0x54, 0xDF, 0x23,
                     0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
                     0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C,
                     0xA6, 0xEB, 0xA5, 0xBE, 0x16, 0x0C, 0xE3, 0x61,
                     0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B,
                     0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1,
                     0xE1, 0xE6, 0xBD, 0x45, 0xE2, 0xF4, 0xB6, 0x66,
                     0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
                     0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA,
                     0xEA, 0x77, 0x39, 0xAF, 0x33, 0xC9, 0x62, 0x71,
                     0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8,
                     0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7,
                     0xA1, 0x1D, 0xAA, 0xED, 0x06, 0x70, 0xB2, 0xD2,
                     0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
                     0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB,
                     0x9E, 0x9C, 0x52, 0x1B, 0x5F, 0x93, 0x0A, 0xEF,
                     0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B,
                     0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64,
                     0x2A, 0xCE, 0xCB, 0x2F, 0xFC, 0x97, 0x05, 0x7A,
                     0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
                     0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02,
                     0xB8, 0xDA, 0xB0, 0x17, 0x55, 0x1F, 0x8A, 0x7D,
                     0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72,
                     0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34,
                     0x6E, 0x50, 0xDE, 0x68, 0x65, 0xBC, 0xDB, 0xF8,
                     0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
                     0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00,
                     0x6F, 0x9D, 0x36, 0x42, 0x4A, 0x5E, 0xC1, 0xE0, };

95
static const uint8_t q1[] = { 0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8,
Ruud de Rooij's avatar
Ruud de Rooij committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
                     0x4A, 0xD3, 0xE6, 0x6B, 0x45, 0x7D, 0xE8, 0x4B,
                     0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1,
                     0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F,
                     0x5E, 0xBA, 0xAE, 0x5B, 0x8A, 0x00, 0xBC, 0x9D,
                     0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
                     0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3,
                     0xB2, 0x73, 0x4C, 0x54, 0x92, 0x74, 0x36, 0x51,
                     0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96,
                     0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C,
                     0x13, 0x95, 0x9C, 0xC7, 0x24, 0x46, 0x3B, 0x70,
                     0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
                     0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC,
                     0x03, 0x6F, 0x08, 0xBF, 0x40, 0xE7, 0x2B, 0xE2,
                     0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9,
                     0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17,
                     0x66, 0x94, 0xA1, 0x1D, 0x3D, 0xF0, 0xDE, 0xB3,
                     0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
                     0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49,
                     0x81, 0x88, 0xEE, 0x21, 0xC4, 0x1A, 0xEB, 0xD9,
                     0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01,
                     0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48,
                     0x4F, 0xF2, 0x65, 0x8E, 0x78, 0x5C, 0x58, 0x19,
                     0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
                     0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5,
                     0xCE, 0xE9, 0x68, 0x44, 0xE0, 0x4D, 0x43, 0x69,
                     0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E,
                     0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC,
                     0x22, 0xC9, 0xC0, 0x9B, 0x89, 0xD4, 0xED, 0xAB,
                     0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
                     0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2,
                     0x16, 0x25, 0x86, 0x56, 0x55, 0x09, 0xBE, 0x91, };

/* ------------------------------------------------------------------------- */

130
/* uint8_t gf_multiply(uint8_t p, uint8_t a, uint8_t b)
Ruud de Rooij's avatar
Ruud de Rooij committed
131
132
133
134
135
136
137
138
139
140
141
142
143
 *
 * Multiplication in GF(2^8).
 *
 * This function multiplies a times b in the Galois Field GF(2^8) with
 * primitive polynomial p.
 * The representation of the polynomials a, b, and p uses bits with
 * values 2^i to represent the terms x^i.  The polynomial p contains an
 * implicit term x^8.
 *
 * Note that addition and subtraction in GF(2^8) is simply the XOR
 * operation.
 */

144
145
static uint8_t
gf_multiply(uint8_t p, uint8_t a, uint8_t b)
Ruud de Rooij's avatar
Ruud de Rooij committed
146
{
147
148
  uint32_t shift  = b;
  uint8_t result = 0;
149
150
151
152
153
154
  while (a)
    {
      if (a & 1) result ^= shift;
      a = a >> 1;
      shift = shift << 1;
      if (shift & 0x100) shift ^= p;
Ruud de Rooij's avatar
Ruud de Rooij committed
155
    }
156
  return result;
Ruud de Rooij's avatar
Ruud de Rooij committed
157
158
159
160
161
162
}

/* ------------------------------------------------------------------------- */

/* The matrix RS as specified in section 4.3 the twofish paper. */

163
static const uint8_t rs_matrix[4][8] = {
Ruud de Rooij's avatar
Ruud de Rooij committed
164
165
166
167
168
    { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E },
    { 0xA4, 0x56, 0x82, 0xF3, 0x1E, 0xC6, 0x68, 0xE5 },
    { 0x02, 0xA1, 0xFC, 0xC1, 0x47, 0xAE, 0x3D, 0x19 },
    { 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E, 0x03 } };

169
/* uint32_t compute_s(uint32_t m1, uint32_t m2);
Ruud de Rooij's avatar
Ruud de Rooij committed
170
171
172
173
174
175
176
177
178
 *
 * Computes the value RS * M, where M is a byte vector composed of the
 * bytes of m1 and m2.  Arithmetic is done in GF(2^8) with primitive
 * polynomial x^8 + x^6 + x^3 + x^2 + 1.
 *
 * This function is used to compute the sub-keys S which are in turn used
 * to generate the S-boxes.
 */

179
180
static uint32_t
compute_s(uint32_t m1, uint32_t m2)
Ruud de Rooij's avatar
Ruud de Rooij committed
181
{
182
  uint32_t s = 0;
183
184
185
186
187
188
189
190
191
192
193
  int i;
  for (i = 0; i < 4; i++)
    s |=  ((  gf_multiply(0x4D, m1,       rs_matrix[i][0])
	    ^ gf_multiply(0x4D, m1 >> 8,  rs_matrix[i][1])
	    ^ gf_multiply(0x4D, m1 >> 16, rs_matrix[i][2])
	    ^ gf_multiply(0x4D, m1 >> 24, rs_matrix[i][3])
	    ^ gf_multiply(0x4D, m2,       rs_matrix[i][4])
	    ^ gf_multiply(0x4D, m2 >> 8,  rs_matrix[i][5])
	    ^ gf_multiply(0x4D, m2 >> 16, rs_matrix[i][6])
	    ^ gf_multiply(0x4D, m2 >> 24, rs_matrix[i][7])) << (i*8));
  return s;
Ruud de Rooij's avatar
Ruud de Rooij committed
194
195
196
197
198
199
200
201
}

/* ------------------------------------------------------------------------- */

/* This table describes which q S-boxes are used for each byte in each stage
 * of the function h, cf. figure 2 of the twofish paper.
 */

202
203
204
205
206
static const uint8_t * const q_table[4][5] =
  { { q1, q1, q0, q0, q1 },
    { q0, q1, q1, q0, q0 },
    { q0, q0, q0, q1, q1 },
    { q1, q0, q1, q1, q0 } };
Ruud de Rooij's avatar
Ruud de Rooij committed
207
208
209

/* The matrix MDS as specified in section 4.3.2 of the twofish paper. */

210
static const uint8_t mds_matrix[4][4] = { { 0x01, 0xEF, 0x5B, 0x5B },
211
212
213
				 { 0x5B, 0xEF, 0xEF, 0x01 },
				 { 0xEF, 0x5B, 0x01, 0xEF },
				 { 0xEF, 0x01, 0xEF, 0x5B } };
Ruud de Rooij's avatar
Ruud de Rooij committed
214

215
/* uint32_t h_uint8_t(int k, int i, uint8_t x, uint8_t l0, uint8_t l1, uint8_t l2, uint8_t l3);
Ruud de Rooij's avatar
Ruud de Rooij committed
216
217
218
219
220
221
222
223
224
 *
 * Perform the h function (section 4.3.2) on one byte.  It consists of
 * repeated applications of the q permutation, followed by a XOR with
 * part of a sub-key.  Finally, the value is multiplied by one column of
 * the MDS matrix.  To obtain the result for a full word, the results of
 * h for the individual bytes are XORed.
 *
 * k is the key size (/ 64 bits), i is the byte number (0 = LSB), x is the
 * actual byte to apply the function to; l0, l1, l2, and l3 are the
225
 * appropriate bytes from the subkey.  Note that only l0..l(k-1) are used.
Ruud de Rooij's avatar
Ruud de Rooij committed
226
227
 */

228
229
static uint32_t
h_byte(int k, int i, uint8_t x, uint8_t l0, uint8_t l1, uint8_t l2, uint8_t l3)
Ruud de Rooij's avatar
Ruud de Rooij committed
230
{
231
  uint8_t y = q_table[i][4][l0 ^
232
233
234
235
            q_table[i][3][l1 ^
              q_table[i][2][k == 2 ? x : l2 ^
                q_table[i][1][k == 3 ? x : l3 ^ q_table[i][0][x]]]]];

236
237
238
239
  return ( ((uint32_t)gf_multiply(0x69, mds_matrix[0][i], y))
	   | ((uint32_t)gf_multiply(0x69, mds_matrix[1][i], y) << 8)
	   | ((uint32_t)gf_multiply(0x69, mds_matrix[2][i], y) << 16)
	   | ((uint32_t)gf_multiply(0x69, mds_matrix[3][i], y) << 24) );
Ruud de Rooij's avatar
Ruud de Rooij committed
240
241
}

242
/* uint32_t h(int k, uint8_t x, uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3);
Ruud de Rooij's avatar
Ruud de Rooij committed
243
244
245
246
 *
 * Perform the function h on a word.  See the description of h_byte() above.
 */

247
248
static uint32_t
h(int k, uint8_t x, uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3)
Ruud de Rooij's avatar
Ruud de Rooij committed
249
{
250
251
252
253
  return (  h_byte(k, 0, x, l0,       l1,       l2,       l3)
	  ^ h_byte(k, 1, x, l0 >> 8,  l1 >> 8,  l2 >> 8,  l3 >> 8)
	  ^ h_byte(k, 2, x, l0 >> 16, l1 >> 16, l2 >> 16, l3 >> 16)
	  ^ h_byte(k, 3, x, l0 >> 24, l1 >> 24, l2 >> 24, l3 >> 24) );
Ruud de Rooij's avatar
Ruud de Rooij committed
254
255
256
257
258
259
260
261
262
263
264
265
}


/* ------------------------------------------------------------------------- */

/* API */

/* Structure which contains the tables containing the subkeys and the
 * key-dependent s-boxes.
 */


266
/* Set up internal tables required for twofish encryption and decryption.
Ruud de Rooij's avatar
Ruud de Rooij committed
267
268
 *
 * The key size is specified in bytes.  Key sizes up to 32 bytes are
269
 * supported.  Larger key sizes are silently truncated.  
Ruud de Rooij's avatar
Ruud de Rooij committed
270
271
 */

272
void
273
274
twofish_set_key(struct twofish_ctx *context,
		unsigned keysize, const uint8_t *key)
Ruud de Rooij's avatar
Ruud de Rooij committed
275
{
276
277
  uint8_t key_copy[32];
  uint32_t m[8], s[4], t;
278
  int i, j, k;
Ruud de Rooij's avatar
Ruud de Rooij committed
279

280
  /* Extend key as necessary */
Ruud de Rooij's avatar
Ruud de Rooij committed
281

282
  assert(keysize <= 32);
283

284
285
  /* We do a little more copying than necessary, but that doesn't
   * really matter. */
286
287
288
  memset(key_copy, 0, 32);
  memcpy(key_copy, key, keysize);

289
290
291
  for (i = 0; i<8; i++)
    m[i] = LE_READ_UINT32(key_copy + i*4);
  
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
  if (keysize <= 16)
    k = 2;
  else if (keysize <= 24)
    k = 3;
  else
    k = 4;

  /* Compute sub-keys */

  for (i = 0; i < 20; i++)
    {
      t = h(k, 2*i+1, m[1], m[3], m[5], m[7]);
      t = rol8(t);
      t += (context->keys[2*i] =
	    t + h(k, 2*i, m[0], m[2], m[4], m[6]));
      t = rol9(t);
      context->keys[2*i+1] = t;
Ruud de Rooij's avatar
Ruud de Rooij committed
309
310
    }

311
  /* Compute key-dependent S-boxes */
Ruud de Rooij's avatar
Ruud de Rooij committed
312

313
314
  for (i = 0; i < k; i++)
    s[k-1-i] = compute_s(m[2*i], m[2*i+1]);
Ruud de Rooij's avatar
Ruud de Rooij committed
315

316
317
318
319
320
321
322
  for (i = 0; i < 4; i++)
    for (j = 0; j < 256; j++)
      context->s_box[i][j] = h_byte(k, i, j,
				    s[0] >> (i*8),
				    s[1] >> (i*8),
				    s[2] >> (i*8),
				    s[3] >> (i*8));
Ruud de Rooij's avatar
Ruud de Rooij committed
323
324
}

325
/* Encrypt blocks of 16 bytes of data with the twofish algorithm.
Ruud de Rooij's avatar
Ruud de Rooij committed
326
 *
327
 * Before this function can be used, twofish_set_key() must be used in order to
Ruud de Rooij's avatar
Ruud de Rooij committed
328
 * set up various tables required for the encryption algorithm.
329
 * 
Ruud de Rooij's avatar
Ruud de Rooij committed
330
331
332
333
334
335
 * This function always encrypts 16 bytes of plaintext to 16 bytes of
 * ciphertext.  The memory areas of the plaintext and the ciphertext can
 * overlap.
 */

void
336
twofish_encrypt(const struct twofish_ctx *context,
337
338
339
		unsigned length,
		uint8_t *ciphertext,
		const uint8_t *plaintext)
Ruud de Rooij's avatar
Ruud de Rooij committed
340
{
341
342
  const uint32_t * keys        = context->keys;
  const uint32_t (*s_box)[256] = context->s_box;
343
344

  assert( !(length % TWOFISH_BLOCK_SIZE) );
345
  for ( ; length; length -= TWOFISH_BLOCK_SIZE)
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    {  
      uint32_t words[4];
      uint32_t r0, r1, r2, r3, t0, t1;
      int i;

      for (i = 0; i<4; i++, plaintext += 4)
	words[i] = LE_READ_UINT32(plaintext);

      r0 = words[0] ^ keys[0];
      r1 = words[1] ^ keys[1];
      r2 = words[2] ^ keys[2];
      r3 = words[3] ^ keys[3];
  
      for (i = 0; i < 8; i++) {
	t1 = (  s_box[1][r1 & 0xFF]
		^ s_box[2][(r1 >> 8) & 0xFF]
		^ s_box[3][(r1 >> 16) & 0xFF]
		^ s_box[0][(r1 >> 24) & 0xFF]);
	t0 = (  s_box[0][r0 & 0xFF]
		^ s_box[1][(r0 >> 8) & 0xFF]
		^ s_box[2][(r0 >> 16) & 0xFF]
		^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
	r3 = (t1 + t0 + keys[4*i+9]) ^ rol1(r3);
	r2 = (t0 + keys[4*i+8]) ^ r2;
	r2 = ror1(r2);

	t1 = (  s_box[1][r3 & 0xFF]
		^ s_box[2][(r3 >> 8) & 0xFF]
		^ s_box[3][(r3 >> 16) & 0xFF]
		^ s_box[0][(r3 >> 24) & 0xFF]);
	t0 = (  s_box[0][r2 & 0xFF]
		^ s_box[1][(r2 >> 8) & 0xFF]
		^ s_box[2][(r2 >> 16) & 0xFF]
		^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
	r1 = (t1 + t0 + keys[4*i+11]) ^ rol1(r1);
	r0 = (t0 + keys[4*i+10]) ^ r0;
	r0 = ror1(r0);
      }

      words[0] = r2 ^ keys[4];
      words[1] = r3 ^ keys[5];
      words[2] = r0 ^ keys[6];
      words[3] = r1 ^ keys[7];

      for (i = 0; i<4; i++, ciphertext += 4)
	LE_WRITE_UINT32(ciphertext, words[i]);
    }
Ruud de Rooij's avatar
Ruud de Rooij committed
393
394
}

395
/* Decrypt blocks of 16 bytes of data with the twofish algorithm.
Ruud de Rooij's avatar
Ruud de Rooij committed
396
 *
397
 * Before this function can be used, twofish_set_key() must be used in order to
Ruud de Rooij's avatar
Ruud de Rooij committed
398
 * set up various tables required for the decryption algorithm.
399
 * 
Ruud de Rooij's avatar
Ruud de Rooij committed
400
401
402
403
404
405
 * This function always decrypts 16 bytes of ciphertext to 16 bytes of
 * plaintext.  The memory areas of the plaintext and the ciphertext can
 * overlap.
 */

void
406
twofish_decrypt(const struct twofish_ctx *context,
407
408
409
410
		unsigned length,
		uint8_t *plaintext,
		const uint8_t *ciphertext)

Ruud de Rooij's avatar
Ruud de Rooij committed
411
{
412
413
  const uint32_t *keys  = context->keys;
  const uint32_t (*s_box)[256] = context->s_box;
414
415

  assert( !(length % TWOFISH_BLOCK_SIZE) );
416
  for ( ; length; length -= TWOFISH_BLOCK_SIZE)
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
    {  
      uint32_t words[4];
      uint32_t r0, r1, r2, r3, t0, t1;
      int i;

      for (i = 0; i<4; i++, ciphertext += 4)
	words[i] = LE_READ_UINT32(ciphertext);

      r0 = words[2] ^ keys[6];
      r1 = words[3] ^ keys[7];
      r2 = words[0] ^ keys[4];
      r3 = words[1] ^ keys[5];

      for (i = 0; i < 8; i++) {
	t1 = (  s_box[1][r3 & 0xFF]
		^ s_box[2][(r3 >> 8) & 0xFF]
		^ s_box[3][(r3 >> 16) & 0xFF]
		^ s_box[0][(r3 >> 24) & 0xFF]);
	t0 = (  s_box[0][r2 & 0xFF]
		^ s_box[1][(r2 >> 8) & 0xFF]
		^ s_box[2][(r2 >> 16) & 0xFF]
		^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
	r1 = (t1 + t0 + keys[39-4*i]) ^ r1;
	r1 = ror1(r1);
	r0 = (t0 + keys[38-4*i]) ^ rol1(r0);

	t1 = (  s_box[1][r1 & 0xFF]
		^ s_box[2][(r1 >> 8) & 0xFF]
		^ s_box[3][(r1 >> 16) & 0xFF]
		^ s_box[0][(r1 >> 24) & 0xFF]);
	t0 = (  s_box[0][r0 & 0xFF]
		^ s_box[1][(r0 >> 8) & 0xFF]
		^ s_box[2][(r0 >> 16) & 0xFF]
		^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
	r3 = (t1 + t0 + keys[37-4*i]) ^ r3;
	r3 = ror1(r3);
	r2 = (t0 + keys[36-4*i]) ^ rol1(r2);
      }

      words[0] = r0 ^ keys[0];
      words[1] = r1 ^ keys[1];
      words[2] = r2 ^ keys[2];
      words[3] = r3 ^ keys[3];

      for (i = 0; i<4; i++, plaintext += 4)
	LE_WRITE_UINT32(plaintext, words[i]);
    }
Ruud de Rooij's avatar
Ruud de Rooij committed
464
}