yarrow256.c 9.51 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/* yarrow256.c
 *
 * The yarrow pseudo-randomness generator.
 */

/* nettle, low-level cryptographics library
 *
 * Copyright (C) 2001 Niels Mller
 *  
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
 * The nettle library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with the nettle library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA.
 */

#include "yarrow.h"

28
29
#include "macros.h"

30
#include <assert.h>
31
#include <stdlib.h>
32
33
#include <string.h>

34
35
36
37
38
#ifndef YARROW_DEBUG
#define YARROW_DEBUG 0
#endif

#if YARROW_DEBUG
Niels Möller's avatar
Niels Möller committed
39
40
41
#include <stdio.h>
#endif

42
43
44
45
46
47
/* Parameters */

/* An upper limit on the entropy (in bits) in one octet of sample
 * data. */
#define YARROW_MULTIPLIER 4

48
49
50
51
52
53
54
55
56
/* Entropy threshold for reseeding from the fast pool */
#define YARROW_FAST_THRESHOLD 100

/* Entropy threshold for reseeding from the fast pool */
#define YARROW_SLOW_THRESHOLD 160

/* Number of sources that must exceed the threshold for slow reseed */
#define YARROW_SLOW_K 2

57
58
59
60
61
/* The number of iterations when reseeding, P_t in the yarrow paper.
 * Should be chosen so that reseeding takes on the order of 0.1-1
 * seconds. */
#define YARROW_RESEED_ITERATIONS 1500

62
63
64
65
66
/* Entropy estimates sticks to this value, it is treated as infinity
 * in calculations. It should fit comfortably in an uint32_t, to avoid
 * overflows. */
#define YARROW_MAX_ENTROPY 0x100000

67
68
69
70
71
72
73
74
/* Forward declarations */

static void
yarrow_fast_reseed(struct yarrow256_ctx *ctx);

static void
yarrow_gate(struct yarrow256_ctx *ctx);

75
76
void
yarrow256_init(struct yarrow256_ctx *ctx,
77
	       unsigned n,
78
79
	       struct yarrow_source *s)
{
80
81
  unsigned i;

82
83
  sha256_init(&ctx->pools[0]);
  sha256_init(&ctx->pools[1]);
84
  
85
86
87
88
  ctx->seeded = 0;

  ctx->nsources = n;
  ctx->sources = s;
89
90
91
92
93
94
95
96
97

  for (i = 0; i<n; i++)
    {
      ctx->sources[i].estimate[YARROW_FAST] = 0;
      ctx->sources[i].estimate[YARROW_SLOW] = 0;
      ctx->sources[i].next = YARROW_FAST;
    }
}

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
void
yarrow256_seed(struct yarrow256_ctx *ctx,
	       unsigned length,
	       uint8_t *seed_file)
{
  /* FIXME: Perhaps it's better to use assert ? */
  if (!length)
    return;

  sha256_update(&ctx->pools[YARROW_FAST], length, seed_file);
  yarrow_fast_reseed(ctx);

  ctx->seeded = 1;
}

/* FIXME: Generalize so that it generates a few more blocks at a
 * time. */
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
static void
yarrow_generate_block(struct yarrow256_ctx *ctx,
		      uint8_t *block)
{
  unsigned i;
  
  aes_encrypt(&ctx->key, sizeof(ctx->counter), block, ctx->counter);

  /* Increment counter, treating it as a big-endian number. This is
   * machine independent, and follows appendix B of the NIST
   * specification of cipher modes of operation.
   *
   * We could keep a representation of thy counter as 4 32-bit values,
   * and write entire words (in big-endian byteorder) into the counter
   * block, whenever they change. */
  for (i = sizeof(ctx->counter); i--; )
    {
      if (++ctx->counter[i])
	break;
    }
135
136
}

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
static void
yarrow_iterate(uint8_t *digest)
{
  uint8_t v0[SHA256_DIGEST_SIZE];
  unsigned i;
  
  memcpy(v0, digest, SHA256_DIGEST_SIZE);
  
  /* When hashed inside the loop, i should run from 1 to
   * YARROW_RESEED_ITERATIONS */
  for (i = 0; ++i < YARROW_RESEED_ITERATIONS; )
    {
      uint8_t count[4];
      struct sha256_ctx hash;
  
      sha256_init(&hash);

      /* Hash v_i | v_0 | i */
      WRITE_UINT32(count, i);
      sha256_update(&hash, SHA256_DIGEST_SIZE, digest);
      sha256_update(&hash, sizeof(v0), v0);
      sha256_update(&hash, sizeof(count), count);

      sha256_final(&hash);
      sha256_digest(&hash, SHA256_DIGEST_SIZE, digest);
    }
}

165
/* NOTE: The SHA-256 digest size equals the AES key size, so we need
166
 * no "size adaptor". */
167
168
169
170
171
172

static void
yarrow_fast_reseed(struct yarrow256_ctx *ctx)
{
  uint8_t digest[SHA256_DIGEST_SIZE];
  unsigned i;
173
  
174
#if YARROW_DEBUG
Niels Möller's avatar
Niels Möller committed
175
176
177
  fprintf(stderr, "yarrow_fast_reseed\n");
#endif
  
178
179
180
181
182
183
184
185
186
187
188
  /* We feed two block of output using the current key into the pool
   * before emptying it. */
  if (ctx->seeded)
    {
      uint8_t blocks[AES_BLOCK_SIZE * 2];
      
      yarrow_generate_block(ctx, blocks);
      yarrow_generate_block(ctx, blocks + AES_BLOCK_SIZE);
      sha256_update(&ctx->pools[YARROW_FAST], sizeof(blocks), blocks);
    }
  
189
190
191
  sha256_final(&ctx->pools[YARROW_FAST]);
  sha256_digest(&ctx->pools[YARROW_FAST], sizeof(digest), digest);
  sha256_init(&ctx->pools[YARROW_FAST]);
192
193
194
195

  /* Iterate */
  yarrow_iterate(digest);

196
197
198
199
200
201
202
203
204
  aes_set_key(&ctx->key, sizeof(digest), digest);

  /* Derive new counter value */
  memset(ctx->counter, 0, sizeof(ctx->counter));
  aes_encrypt(&ctx->key, sizeof(ctx->counter), ctx->counter, ctx->counter);
  
  /* Reset estimates. */
  for (i = 0; i<ctx->nsources; i++)
    ctx->sources[i].estimate[YARROW_FAST] = 0;
205
206
207
208
209
210
211

  /* New seed file. */
  /* FIXME: Extract this into a function of its own. */
  for (i = 0; i < sizeof(ctx->seed_file); i+= AES_BLOCK_SIZE)
    yarrow_generate_block(ctx, ctx->seed_file + i);

  yarrow_gate(ctx);
212
213
214
215
216
217
218
219
}

static void
yarrow_slow_reseed(struct yarrow256_ctx *ctx)
{
  uint8_t digest[SHA256_DIGEST_SIZE];
  unsigned i;

220
#if YARROW_DEBUG
Niels Möller's avatar
Niels Möller committed
221
222
223
  fprintf(stderr, "yarrow_slow_reseed\n");
#endif

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
  /* Get digest of the slow pool*/
  
  sha256_final(&ctx->pools[YARROW_SLOW]);
  sha256_digest(&ctx->pools[YARROW_SLOW], sizeof(digest), digest);
  sha256_init(&ctx->pools[YARROW_SLOW]);

  /* Feed it into the fast pool */
  sha256_update(&ctx->pools[YARROW_SLOW], sizeof(digest), digest);

  yarrow_fast_reseed(ctx);
  
  /* Reset estimates. */
  for (i = 0; i<ctx->nsources; i++)
    ctx->sources[i].estimate[YARROW_SLOW] = 0;
}

240
int
241
242
243
244
245
246
247
248
249
250
251
yarrow256_update(struct yarrow256_ctx *ctx,
		 unsigned source_index, unsigned entropy,
		 unsigned length, const uint8_t *data)
{
  enum yarrow_pool_id current;
  struct yarrow_source *source;
  
  assert(source_index < ctx->nsources);

  if (!length)
    /* Nothing happens */
252
    return 0;
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

  source = &ctx->sources[source_index];
  
  if (!ctx->seeded)
    /* While seeding, use the slow pool */
    current = YARROW_SLOW;
  else
    {
      current = source->next;
      source->next = !source->next;
    }

  sha256_update(&ctx->pools[current], length, data);
 
  /* NOTE: We should be careful to avoid overflows in the estimates. */
  if (source->estimate[current] < YARROW_MAX_ENTROPY)
    {
      if (entropy > YARROW_MAX_ENTROPY)
	entropy = YARROW_MAX_ENTROPY;

      if ( (length < (YARROW_MAX_ENTROPY / YARROW_MULTIPLIER))
	   && (entropy > YARROW_MULTIPLIER * length) )
	entropy = YARROW_MULTIPLIER * length;

      /* FIXME: Calling a more sophisticated estimater should be done
       * here. */

      entropy += source->estimate[current];
      if (entropy > YARROW_MAX_ENTROPY)
	entropy = YARROW_MAX_ENTROPY;

      source->estimate[current] = entropy;
    }

  /* Check for seed/reseed */
288
289
290
  switch(current)
    {
    case YARROW_FAST:
291
#if YARROW_DEBUG
Niels Möller's avatar
Niels Möller committed
292
293
294
295
296
      fprintf(stderr,
              "yarrow256_update: source_index = %d,\n"
              "            fast pool estimate = %d\n",
              source_index, source->estimate[YARROW_FAST]);
#endif
297
298
299
300
301
302
303
304
      if (source->estimate[YARROW_FAST] >= YARROW_FAST_THRESHOLD)
	{
	  yarrow_fast_reseed(ctx);
	  return 1;
	}
      else
	return 0;

305
306
307
308
309
    case YARROW_SLOW:
      {
	/* FIXME: This is somewhat inefficient. It would be better to
	 * either maintain the count, or do this loop only if the
	 * current source just crossed the threshold. */
Niels Möller's avatar
Niels Möller committed
310
        
311
        if (!yarrow256_needed_sources(ctx))
312
313
314
	  {
	    yarrow_slow_reseed(ctx);
	    ctx->seeded = 1;
315
316

	    return 1;
317
	  }
318
319
	else
	  return 0;
320
      }
321
322
    default:
      abort();
323
    }
324
325
326
}

static void
327
yarrow_gate(struct yarrow256_ctx *ctx)
328
{
329
330
  uint8_t key[AES_MAX_KEY_SIZE];
  unsigned i;
331

332
333
  for (i = 0; i < sizeof(key); i+= AES_BLOCK_SIZE)
    yarrow_generate_block(ctx, key + i);
334

335
  aes_set_key(&ctx->key, sizeof(key), key);
336
337
338
339
340
341
342
}

void
yarrow256_random(struct yarrow256_ctx *ctx, unsigned length, uint8_t *dst)
{
  assert(ctx->seeded);

343
  while (length >= AES_BLOCK_SIZE)
344
    {
345
      yarrow_generate_block(ctx, dst);
346
347
348
349
350
      dst += AES_BLOCK_SIZE;
      length -= AES_BLOCK_SIZE;
    }
  if (length)
    {
351
352
      uint8_t buffer[AES_BLOCK_SIZE];
      
353
      assert(length < AES_BLOCK_SIZE);
354
355
      yarrow_generate_block(ctx, buffer);
      memcpy(dst, buffer, length);
356
    }
357
  yarrow_gate(ctx);
358
}
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

int
yarrow256_is_seeded(struct yarrow256_ctx *ctx)
{
  return ctx->seeded;
}

unsigned
yarrow256_needed_sources(struct yarrow256_ctx *ctx)
{
  /* FIXME: This is somewhat inefficient. It would be better to
   * either maintain the count, or do this loop only if the
   * current source just crossed the threshold. */
  unsigned k, i;

  for (i = k = 0; i < ctx->nsources; i++)
    if (ctx->sources[i].estimate[YARROW_SLOW] >= YARROW_SLOW_THRESHOLD)
      k++;

#if YARROW_DEBUG
  fprintf(stderr,
          "yarrow256_needed_sources: source_index = %d,\n"
          "                    slow pool estimate = %d,\n"
          "     number of sources above threshold = %d\n",
          source_index, source->estimate[YARROW_SLOW], k);
#endif
  
  return (k < YARROW_SLOW_K) ? (YARROW_SLOW_K - k) : 0;
}
388
389
390
391
392
393

void
yarrow256_force_reseed(struct yarrow256_ctx *ctx)
{
  yarrow_slow_reseed(ctx);
}