bignum-random-prime.c 14.7 KB
Newer Older
1 2 3 4 5 6 7
/* bignum-random-prime.c
 *
 * Generation of random provable primes.
 */

/* nettle, low-level cryptographics library
 *
Niels Möller's avatar
Niels Möller committed
8
 * Copyright (C) 2010 Niels Möller
9 10 11 12 13 14 15 16 17 18 19 20 21
 *  
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
 * The nettle library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with the nettle library; see the file COPYING.LIB.  If not, write to
22 23
 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
 * MA 02111-1301, USA.
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 */

#if HAVE_CONFIG_H
# include "config.h"
#endif

#ifndef RANDOM_PRIME_VERBOSE
#define RANDOM_PRIME_VERBOSE 0
#endif

#include <assert.h>
#include <stdlib.h>

#if RANDOM_PRIME_VERBOSE
#include <stdio.h>
#define VERBOSE(x) (fputs((x), stderr))
#else
#define VERBOSE(x)
#endif

#include "bignum.h"

#include "macros.h"

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
/* Use a table of p_2 = 3 to p_{172} = 1021, used for sieving numbers
   of up to 20 bits. */

#define NPRIMES 171
#define TRIAL_DIV_BITS 20
#define TRIAL_DIV_MASK ((1 << TRIAL_DIV_BITS) - 1)

/* A 20-bit number x is divisible by p iff

     ((x * inverse) & TRIAL_DIV_MASK) <= limit
*/
struct trial_div_info {
  uint32_t inverse; /* p^{-1} (mod 2^20) */
  uint32_t limit;   /* floor( (2^20 - 1) / p) */
};

static const uint16_t
primes[NPRIMES] = {
  3,5,7,11,13,17,19,23,
  29,31,37,41,43,47,53,59,
  61,67,71,73,79,83,89,97,
  101,103,107,109,113,127,131,137,
  139,149,151,157,163,167,173,179,
  181,191,193,197,199,211,223,227,
  229,233,239,241,251,257,263,269,
  271,277,281,283,293,307,311,313,
  317,331,337,347,349,353,359,367,
  373,379,383,389,397,401,409,419,
  421,431,433,439,443,449,457,461,
  463,467,479,487,491,499,503,509,
  521,523,541,547,557,563,569,571,
  577,587,593,599,601,607,613,617,
  619,631,641,643,647,653,659,661,
  673,677,683,691,701,709,719,727,
  733,739,743,751,757,761,769,773,
  787,797,809,811,821,823,827,829,
  839,853,857,859,863,877,881,883,
  887,907,911,919,929,937,941,947,
  953,967,971,977,983,991,997,1009,
  1013,1019,1021,
};

static const uint32_t
prime_square[NPRIMES+1] = {
  9,25,49,121,169,289,361,529,
  841,961,1369,1681,1849,2209,2809,3481,
  3721,4489,5041,5329,6241,6889,7921,9409,
  10201,10609,11449,11881,12769,16129,17161,18769,
  19321,22201,22801,24649,26569,27889,29929,32041,
  32761,36481,37249,38809,39601,44521,49729,51529,
  52441,54289,57121,58081,63001,66049,69169,72361,
  73441,76729,78961,80089,85849,94249,96721,97969,
  100489,109561,113569,120409,121801,124609,128881,134689,
  139129,143641,146689,151321,157609,160801,167281,175561,
  177241,185761,187489,192721,196249,201601,208849,212521,
  214369,218089,229441,237169,241081,249001,253009,259081,
  271441,273529,292681,299209,310249,316969,323761,326041,
  332929,344569,351649,358801,361201,368449,375769,380689,
  383161,398161,410881,413449,418609,426409,434281,436921,
  452929,458329,466489,477481,491401,502681,516961,528529,
  537289,546121,552049,564001,573049,579121,591361,597529,
  619369,635209,654481,657721,674041,677329,683929,687241,
  703921,727609,734449,737881,744769,769129,776161,779689,
  786769,822649,829921,844561,863041,877969,885481,896809,
  908209,935089,942841,954529,966289,982081,994009,1018081,
  1026169,1038361,1042441,1L<<20
114 115
};

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
static const struct trial_div_info
trial_div_table[NPRIMES] = {
  {699051,349525},{838861,209715},{748983,149796},{953251,95325},
  {806597,80659},{61681,61680},{772635,55188},{866215,45590},
  {180789,36157},{1014751,33825},{793517,28339},{1023001,25575},
  {48771,24385},{870095,22310},{217629,19784},{710899,17772},
  {825109,17189},{281707,15650},{502135,14768},{258553,14364},
  {464559,13273},{934875,12633},{1001449,11781},{172961,10810},
  {176493,10381},{203607,10180},{568387,9799},{788837,9619},
  {770193,9279},{1032063,8256},{544299,8004},{619961,7653},
  {550691,7543},{182973,7037},{229159,6944},{427445,6678},
  {701195,6432},{370455,6278},{90917,6061},{175739,5857},
  {585117,5793},{225087,5489},{298817,5433},{228877,5322},
  {442615,5269},{546651,4969},{244511,4702},{83147,4619},
  {769261,4578},{841561,4500},{732687,4387},{978961,4350},
  {133683,4177},{65281,4080},{629943,3986},{374213,3898},
  {708079,3869},{280125,3785},{641833,3731},{618771,3705},
  {930477,3578},{778747,3415},{623751,3371},{40201,3350},
  {122389,3307},{950371,3167},{1042353,3111},{18131,3021},
  {285429,3004},{549537,2970},{166487,2920},{294287,2857},
  {919261,2811},{636339,2766},{900735,2737},{118605,2695},
  {10565,2641},{188273,2614},{115369,2563},{735755,2502},
  {458285,2490},{914767,2432},{370513,2421},{1027079,2388},
  {629619,2366},{462401,2335},{649337,2294},{316165,2274},
  {484655,2264},{65115,2245},{326175,2189},{1016279,2153},
  {990915,2135},{556859,2101},{462791,2084},{844629,2060},
  {404537,2012},{457123,2004},{577589,1938},{638347,1916},
  {892325,1882},{182523,1862},{1002505,1842},{624371,1836},
  {69057,1817},{210787,1786},{558769,1768},{395623,1750},
  {992745,1744},{317855,1727},{384877,1710},{372185,1699},
  {105027,1693},{423751,1661},{408961,1635},{908331,1630},
  {74551,1620},{36933,1605},{617371,1591},{506045,1586},
  {24929,1558},{529709,1548},{1042435,1535},{31867,1517},
  {166037,1495},{928781,1478},{508975,1458},{4327,1442},
  {779637,1430},{742091,1418},{258263,1411},{879631,1396},
  {72029,1385},{728905,1377},{589057,1363},{348621,1356},
  {671515,1332},{710453,1315},{84249,1296},{959363,1292},
  {685853,1277},{467591,1274},{646643,1267},{683029,1264},
  {439927,1249},{254461,1229},{660713,1223},{554195,1220},
  {202911,1215},{753253,1195},{941457,1190},{776635,1187},
  {509511,1182},{986147,1156},{768879,1151},{699431,1140},
  {696417,1128},{86169,1119},{808997,1114},{25467,1107},
  {201353,1100},{708087,1084},{1018339,1079},{341297,1073},
  {434151,1066},{96287,1058},{950765,1051},{298257,1039},
  {675933,1035},{167731,1029},{815445,1027},
161 162
};

163 164 165 166 167
/* Element j gives the index of the first prime of size 3+j bits */
static uint8_t
prime_by_size[9] = {
  1,3,5,10,17,30,53,96,171
};
168 169

/* Combined Miller-Rabin test to the base a, and checking the
170 171
   conditions from Pocklington's theorem, nm1dq holds (n-1)/q, with q
   prime. */
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static int
miller_rabin_pocklington(mpz_t n, mpz_t nm1, mpz_t nm1dq, mpz_t a)
{
  mpz_t r;
  mpz_t y;
  int is_prime = 0;

  /* Avoid the mp_bitcnt_t type for compatibility with older GMP
     versions. */
  unsigned k;
  unsigned j;

  VERBOSE(".");

  if (mpz_even_p(n) || mpz_cmp_ui(n, 3) < 0)
    return 0;

  mpz_init(r);
  mpz_init(y);

  k = mpz_scan1(nm1, 0);
  assert(k > 0);

  mpz_fdiv_q_2exp (r, nm1, k);

  mpz_powm(y, a, r, n);

  if (mpz_cmp_ui(y, 1) == 0 || mpz_cmp(y, nm1) == 0)
200 201
    goto passed_miller_rabin;
    
202 203 204 205 206 207
  for (j = 1; j < k; j++)
    {
      mpz_powm_ui (y, y, 2, n);

      if (mpz_cmp_ui (y, 1) == 0)
	break;
208

209
      if (mpz_cmp (y, nm1) == 0)
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
	{
	passed_miller_rabin:
	  /* We know that a^{n-1} = 1 (mod n)

	     Remains to check that gcd(a^{(n-1)/q} - 1, n) == 1 */      
	  VERBOSE("x");

	  mpz_powm(y, a, nm1dq, n);
	  mpz_sub_ui(y, y, 1);
	  mpz_gcd(y, y, n);
	  is_prime = mpz_cmp_ui (y, 1) == 0;
	  VERBOSE(is_prime ? "\n" : "");
	  break;
	}

225 226 227 228 229 230 231 232
    }

  mpz_clear(r);
  mpz_clear(y);

  return is_prime;
}

233
/* The most basic variant of Pocklingtons theorem:
234

235
   Assume that q^e | (n-1), with q prime. If we can find an a such that
236 237

     a^{n-1} = 1 (mod n)
238
     gcd(a^{(n-1)/q} - 1, n) = 1
239

240
   then any prime divisor p of n satisfies p = 1 (mod q^e).
241

242 243 244
   Proof (Cohen, 8.3.2): Assume p is a prime factor of n. The central
   idea of the proof is to consider the order, modulo p, of a. Denote
   this by d.
245

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
   a^{n-1} = 1 (mod n) implies a^{n-1} = 1 (mod p), hence d | (n-1).
   Next, the condition gcd(a^{(n-1)/q} - 1, n) = 1 implies that
   a^{(n-1)/q} != 1, hence d does not divide (n-1)/q. Since q is
   prime, this means that q^e | d.

   Finally, we have a^{p-1} = 1 (mod p), hence d | (p-1). So q^e | d |
   (p-1), which gives the desired result: p = 1 (mod q^e).


   * Variant, slightly stronger than Fact 4.59, HAC:

   Assume n = 1 + 2rq, q an odd prime, r <= 2q, and 

     a^{n-1} = 1 (mod n)
     gcd(a^{(n-1)/q} - 1, n) = 1

   Then n is prime.

   Proof: By Pocklington's theorem, any prime factor p satisfies p = 1
   (mod q). Neither 1 or q+1 are primes, hence p >= 1 + 2q. If n is
   composite, we have n >= (1+2q)^2. But the assumption r <= 2q
   implies n <= 1 + 4q^2, a contradiction.

   In bits, the requirement is that #n <= 2 #q, then

     r = (n-1)/2q < 2^{#n - #q} <= 2^#q = 2 2^{#q-1}< 2 q


   * Another variant with an extra test (Variant of Fact 4.42, HAC):

   Assume n = 1 + 2rq, n odd, q an odd prime, 8 q^3 >= n

     a^{n-1} = 1 (mod n)
     gcd(a^{(n-1)/q} - 1, n) = 1

   Also let x = floor(r / 2q), y = r mod 2q, 

   If y^2 - 4x is not a square, then n is prime.

   Proof (adapted from Maurer, Journal of Cryptology, 8 (1995)):

   Assume n is composite. There are at most two factors, both odd,

     n = (1+2m_1 q)(1+2m_2 q) = 1 + 4 m_1 m_2 q^2 + 2 (m_1 + m_2) q
     
   where we can assume m_1 >= m_2. Then the bound n <= 8 q^3 implies m_1
   m_2 < 2q, restricting (m_1, m_2) to the domain 0 < m_2 <
   sqrt(2q), 0 < m_1 < 2q / m_2.

   We have the bound

     m_1 + m_2 < 2q / m_2 + m_2 <= 2q + 1 (maximum value for m_2 = 1)

   And the case m_1 = 2q, m_2 = 1 can be excluded, because it gives n
   > 8q^3. So in fact, m_1 + m_2 < 2q.

   Next, write r = (n-1)/2q = 2 m_1 m_2 q + m_1 + m_2.
   
   If follows that m_1 + m_2 = y and m_1 m_2 = x. m_1 and m_2 are
   thus the roots of the equation

     m^2 - y m + x = 0

   which has integer roots iff y^2 - 4 x is the square of an integer.

   In bits, the requirement is that #n <= 3 #q, then

     n < 2^#n <= 2^{3 #q} = 8 2^{3 (#q-1)} < 8 q^3
314 315 316
*/

/* Generate a prime number p of size bits with 2 p0q dividing (p-1).
317 318 319
   p0 must be of size >= ceil(bits/3). The extra factor q can be
   omitted. If top_bits_set is one, the topmost two bits are set to
   one, suitable for RSA primes. Also returns r = (p-1)/q. */
320
void
321 322
_nettle_generate_pocklington_prime (mpz_t p, mpz_t r,
				    unsigned bits, int top_bits_set, 
323
				    void *ctx, nettle_random_func *random, 
324 325 326
				    const mpz_t p0,
				    const mpz_t q,
				    const mpz_t p0q)
327
{
328 329 330 331 332 333 334 335 336 337 338
  mpz_t r_min, r_range, pm1, a, e;
  int need_square_test;
  unsigned p0_bits;
  mpz_t x, y, p04;

  p0_bits = mpz_sizeinbase (p0, 2);

  assert (bits <= 3*p0_bits);
  assert (bits > p0_bits);

  need_square_test = (bits > 2 * p0_bits);
339

340 341
  mpz_init (r_min);
  mpz_init (r_range);
342 343 344
  mpz_init (pm1);
  mpz_init (a);

345 346 347 348 349 350 351 352 353 354 355
  if (need_square_test)
    {
      mpz_init (x);
      mpz_init (y);
      mpz_init (p04);
      mpz_mul_2exp (p04, p0, 2);
    }

  if (q)
    mpz_init (e);

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
  if (top_bits_set)
    {
      /* i = floor (2^{bits-3} / p0q), then 3I + 3 <= r <= 4I, with I
	 - 2 possible values. */
      mpz_set_ui (r_min, 1);
      mpz_mul_2exp (r_min, r_min, bits-3);
      mpz_fdiv_q (r_min, r_min, p0q);
      mpz_sub_ui (r_range, r_min, 2);
      mpz_mul_ui (r_min, r_min, 3);
      mpz_add_ui (r_min, r_min, 3);
    }
  else
    {
      /* i = floor (2^{bits-2} / p0q), I + 1 <= r <= 2I */
      mpz_set_ui (r_range, 1);
      mpz_mul_2exp (r_range, r_range, bits-2);
      mpz_fdiv_q (r_range, r_range, p0q);
      mpz_add_ui (r_min, r_range, 1);
    }
375

376
  for (;;)
377
    {
378
      uint8_t buf[1];
379

380 381
      nettle_mpz_random (r, ctx, random, r_range);
      mpz_add (r, r, r_min);
382

383 384 385 386
      /* Set p = 2*r*p0q + 1 */
      mpz_mul_2exp(r, r, 1);
      mpz_mul (pm1, r, p0q);
      mpz_add_ui (p, pm1, 1);
387

388 389 390 391 392 393 394 395 396 397 398 399 400
      assert(mpz_sizeinbase(p, 2) == bits);

      /* Should use GMP trial division interface when that
	 materializes, we don't need any testing beyond trial
	 division. */
      if (!mpz_probab_prime_p (p, 1))
	continue;

      random(ctx, sizeof(buf), buf);
	  
      mpz_set_ui (a, buf[0] + 2);

      if (q)
401 402
	{
	  mpz_mul (e, r, q);
403 404 405 406 407 408 409 410 411
	  if (!miller_rabin_pocklington(p, pm1, e, a))
	    continue;

	  if (need_square_test)
	    {
	      /* Our e corresponds to 2r in the theorem */
	      mpz_tdiv_qr (x, y, e, p04);
	      goto square_test;
	    }
412
	}
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
      else
	{
	  if (!miller_rabin_pocklington(p, pm1, r, a))
	    continue;
	  if (need_square_test)
	    {
	      mpz_tdiv_qr (x, y, r, p04);
	    square_test:
	      /* We have r' = 2r, x = floor (r/2q) = floor(r'/2q),
		 and y' = r' - x 4q = 2 (r - x 2q) = 2y.

		 Then y^2 - 4x is a square iff y'^2 - 16 x is a
		 square. */
		 
	      mpz_mul (y, y, y);
	      mpz_submul_ui (y, x, 16);
	      if (mpz_perfect_square_p (y))
		continue;
	    }
	}

      /* If we passed all the tests, we have found a prime. */
      break;
436
    }
437 438
  mpz_clear (r_min);
  mpz_clear (r_range);
439 440
  mpz_clear (pm1);
  mpz_clear (a);
441 442 443 444 445 446 447 448 449

  if (need_square_test)
    {
      mpz_clear (x);
      mpz_clear (y);
      mpz_clear (p04);
    }
  if (q)
    mpz_clear (e);
450
}
451

452 453
/* Generate random prime of a given size. Maurer's algorithm (Alg.
   6.42 Handbook of applied cryptography), but with ratio = 1/2 (like
454
   the variant in fips186-3). */
455
void
456
nettle_random_prime(mpz_t p, unsigned bits, int top_bits_set,
457 458
		    void *random_ctx, nettle_random_func *random,
		    void *progress_ctx, nettle_progress_func *progress)
459 460 461 462 463 464 465
{
  assert (bits >= 3);
  if (bits <= 10)
    {
      unsigned first;
      unsigned choices;
      uint8_t buf;
466

467 468 469
      assert (!top_bits_set);

      random (random_ctx, sizeof(buf), &buf);
470

471 472 473 474 475 476 477 478 479 480 481
      first = prime_by_size[bits-3];
      choices = prime_by_size[bits-2] - first;
      
      mpz_set_ui (p, primes[first + buf % choices]);
    }
  else if (bits <= 20)
    {
      unsigned long highbit;
      uint8_t buf[3];
      unsigned long x;
      unsigned j;
482
      
483 484
      assert (!top_bits_set);

485 486 487
      highbit = 1L << (bits - 1);

    again:
488
      random (random_ctx, sizeof(buf), buf);
489 490 491 492
      x = READ_UINT24(buf);
      x &= (highbit - 1);
      x |= highbit | 1;

493 494 495 496 497 498 499
      for (j = 0; prime_square[j] <= x; j++)
	{
	  unsigned q = x * trial_div_table[j].inverse & TRIAL_DIV_MASK;
	  if (q <= trial_div_table[j].limit)
	    goto again;
	}
      mpz_set_ui (p, x);
500 501 502
    }
  else
    {
503
      mpz_t q, r;
504 505

      mpz_init (q);
506
      mpz_init (r);
507

508 509 510
     /* Bit size ceil(k/2) + 1, slightly larger than used in Alg. 4.62
	in Handbook of Applied Cryptography (which seems to be
	incorrect for odd k). */
511 512
      nettle_random_prime (q, (bits+3)/2, 0, random_ctx, random,
			   progress_ctx, progress);
513

514 515
      _nettle_generate_pocklington_prime (p, r, bits, top_bits_set,
					  random_ctx, random,
516 517
					  q, NULL, q);
      
518 519 520
      if (progress)
	progress (progress_ctx, 'x');

521
      mpz_clear (q);
522
      mpz_clear (r);
523 524
    }
}