camellia-set-encrypt-key.c 9.43 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
/* camellia-set-encrypt-key.c
 *
 * Key setup for the camellia block cipher.
 */
/*
 * Copyright (C) 2006,2007
 * NTT (Nippon Telegraph and Telephone Corporation).
 *
 * Copyright (C) 2010 Niels Mller
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */

/*
 * Algorithm Specification 
 *  http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html
 */

/* Based on camellia.c ver 1.2.0, see
   http://info.isl.ntt.co.jp/crypt/eng/camellia/dl/camellia-LGPL-1.2.0.tar.gz.
 */
#if HAVE_CONFIG_H
# include "config.h"
#endif

#include <assert.h>

#include "camellia-internal.h"

#include "macros.h"

/* key constants */

#define SIGMA1 0xA09E667F3BCC908BULL
#define SIGMA2 0xB67AE8584CAA73B2ULL
#define SIGMA3 0xC6EF372FE94F82BEULL
#define SIGMA4 0x54FF53A5F1D36F1CULL
#define SIGMA5 0x10E527FADE682D1DULL
#define SIGMA6 0xB05688C2B3E6C1FDULL

#define CAMELLIA_SP1110(INDEX) (_nettle_camellia_table.sp1110[(int)(INDEX)])
#define CAMELLIA_SP0222(INDEX) (_nettle_camellia_table.sp0222[(int)(INDEX)])
#define CAMELLIA_SP3033(INDEX) (_nettle_camellia_table.sp3033[(int)(INDEX)])
#define CAMELLIA_SP4404(INDEX) (_nettle_camellia_table.sp4404[(int)(INDEX)])

#define CAMELLIA_F(x, k, y) do {		\
    uint32_t __yl, __yr;			\
    uint64_t __i = (x) ^ (k);			\
    __yl					\
      = CAMELLIA_SP1110( __i & 0xff)		\
      ^ CAMELLIA_SP0222((__i >> 24) & 0xff)	\
      ^ CAMELLIA_SP3033((__i >> 16) & 0xff)	\
      ^ CAMELLIA_SP4404((__i >> 8) & 0xff);	\
    __yr					\
      = CAMELLIA_SP1110( __i >> 56)		\
      ^ CAMELLIA_SP0222((__i >> 48) & 0xff)	\
      ^ CAMELLIA_SP3033((__i >> 40) & 0xff)	\
      ^ CAMELLIA_SP4404((__i >> 32) & 0xff);	\
    __yl ^= __yr;				\
    __yr = ROL32(24, __yr);			\
    __yr ^= __yl;				\
    (y) = ((uint64_t) __yl << 32) | __yr;	\
  } while (0)

#define CAMELLIA_F_HALF_INV(x) do {		\
    uint32_t __t, __w;				\
    __t = (x) >> 32;				\
    __w = __t ^(x);				\
    __w = ROL32(8, __w);			\
    (x) = ((uint64_t) __w << 32) | (__t ^ __w);	\
  } while (0)


static void
camellia_setup128(uint64_t *subkey, const uint64_t *key)
{
    uint64_t k0, k1, w;

    /**
     *  k == k0 || k1 (|| is concatenation)
     */
    k0 = key[0];
    k1 = key[1];

    /**
     * generate KL dependent subkeys
     */
    subkey[0] = k0; subkey[1] = k1;
    ROL128(15, k0, k1);
    subkey[4] = k0; subkey[5] = k1;
    ROL128(30, k0, k1);
    subkey[10] = k0; subkey[11] = k1;
    ROL128(15, k0, k1);
    subkey[13] = k1;
    ROL128(17, k0, k1);
    subkey[16] = k0; subkey[17] = k1;
    ROL128(17, k0, k1);
    subkey[18] = k0; subkey[19] = k1;
    ROL128(17, k0, k1);
    subkey[22] = k0; subkey[23] = k1;

    /* generate KA. D1 is k0, d2 is k1. */
    /* FIXME: Make notation match the spec better. */
    /* For the 128-bit case, KR = 0, the construvtion of KA reduces to:

       D1 = KL >> 64;
       W = KL & MASK64;
       D2 = F(D1, Sigma1);
       W = D2 ^ W
       D1 = F(W, Sigma2)
       D2 = D2 ^ F(D1, Sigma3);
       D1 = D1 ^ F(D2, Sigma4);
       KA = (D1 << 64) | D2;
    */
    k0 = subkey[0]; w = subkey[1];
    CAMELLIA_F(k0, SIGMA1, k1);
    w ^= k1;
    CAMELLIA_F(w, SIGMA2, k0);
    CAMELLIA_F(k0, SIGMA3, w);
    k1 ^= w;
    CAMELLIA_F(k1, SIGMA4, w);
    k0 ^= w;

    /* generate KA dependent subkeys */
    subkey[2] = k0; subkey[3] = k1;
    ROL128(15, k0, k1);
    subkey[6] = k0; subkey[7] = k1;
    ROL128(15, k0, k1);
    subkey[8] = k0; subkey[9] = k1;
    ROL128(15, k0, k1);
    subkey[12] = k0;
    ROL128(15, k0, k1);
    subkey[14] = k0; subkey[15] = k1;
    ROL128(34, k0, k1);
    subkey[20] = k0; subkey[21] = k1;
    ROL128(17, k0, k1);
    subkey[24] = k0; subkey[25] = k1;

    return;
}

static void
camellia_setup256(uint64_t *subkey, const uint64_t *key)
{
    uint64_t k0, k1, k2, k3;
    uint64_t w;

    /**
     *  key = (kll || klr || krl || krr || krll || krlr || krrl || krrr)
     *  (|| is concatenation)
     */

    k0  = key[0];
    k1  = key[1];
    k2  = key[2];
    k3  = key[3];

    /* generate KL dependent subkeys */
    subkey[0] = k0; subkey[1] = k1;
    ROL128(45, k0, k1);
    subkey[12] = k0; subkey[13] = k1;
    ROL128(15, k0, k1);
    subkey[16] = k0; subkey[17] = k1;
    ROL128(17, k0, k1);
    subkey[22] = k0; subkey[23] = k1;
    ROL128(34, k0, k1);
    subkey[30] = k0; subkey[31] = k1;

    /* generate KR dependent subkeys */
    ROL128(15, k2, k3);
    subkey[4] = k2; subkey[5] = k3;
    ROL128(15, k2, k3);
    subkey[8] = k2; subkey[9] = k3;
    ROL128(30, k2, k3);
    subkey[18] = k2; subkey[19] = k3;
    ROL128(34, k2, k3);
    subkey[26] = k2; subkey[27] = k3;
    ROL128(34, k2, k3);

    /* generate KA */
    /* The construction of KA is done as

       D1 = (KL ^ KR) >> 64
       D2 = (KL ^ KR) & MASK64
       W = F(D1, SIGMA1)
       D2 = D2 ^ W
       D1 = F(D2, SIGMA2) ^ (KR >> 64)
       D2 = F(D1, SIGMA3) ^ W ^ (KR & MASK64)
       D1 = D1 ^ F(W, SIGMA2)
       D2 = D2 ^ F(D1, SIGMA3)
       D1 = D1 ^ F(D2, SIGMA4)
    */

    k0 = subkey[0] ^ k2;
    k1 = subkey[1] ^ k3;

    CAMELLIA_F(k0, SIGMA1, w);
    k1 ^= w;

    CAMELLIA_F(k1, SIGMA2, k0);
    k0 ^= k2;

    CAMELLIA_F(k0, SIGMA3, k1);
    k1 ^= w ^ k3;

    CAMELLIA_F(k1, SIGMA4, w);
    k0 ^= w;

    /* generate KB */
    k2 ^= k0; k3 ^= k1;
    CAMELLIA_F(k2, SIGMA5, w);
    k3 ^= w;
    CAMELLIA_F(k3, SIGMA6, w);
    k2 ^= w;

    /* generate KA dependent subkeys */
    ROL128(15, k0, k1);
    subkey[6] = k0; subkey[7] = k1;
    ROL128(30, k0, k1);
    subkey[14] = k0; subkey[15] = k1;
    ROL128(32, k0, k1);
    subkey[24] = k0; subkey[25] = k1;
    ROL128(17, k0, k1);
    subkey[28] = k0; subkey[29] = k1;

    /* generate KB dependent subkeys */
    subkey[2] = k2; subkey[3] = k3;
    ROL128(30, k2, k3);
    subkey[10] = k2; subkey[11] = k3;
    ROL128(30, k2, k3);
    subkey[20] = k2; subkey[21] = k3;
    ROL128(51, k2, k3);
    subkey[32] = k2; subkey[33] = k3;

    return;
}

void
camellia_set_encrypt_key(struct camellia_ctx *ctx,
			 unsigned length, const uint8_t *key)
{
  uint64_t k[4];

  /* Subkeys according to the spec, 26 for short keys and 34 for large
     keys */
  uint64_t subkey[34];
259
  uint64_t kw2, kw4;
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
  
  uint32_t dw, tl, tr;
  unsigned i;

  k[0] = READ_UINT64(key);
  k[1] = READ_UINT64(key +  8);
  
  if (length == 16)
    {
      ctx->nkeys = 26;
      camellia_setup128(subkey, k);
    }
  else
    {
      ctx->nkeys = 34;
      k[2] = READ_UINT64(key + 16);

      if (length == 24)
	k[3] = ~k[2];
      else
	{
	  assert (length == 32);
	  k[3] = READ_UINT64(key + 24);
	}
      camellia_setup256(subkey, k);
    }

  /* absorb kw2 to other subkeys */
288
  kw2 = subkey[1];
289

290 291 292 293 294 295 296 297 298 299 300 301 302 303
  subkey[3] ^= kw2;
  subkey[5] ^= kw2;
  subkey[7] ^= kw2;
  for (i = 8; i < ctx->nkeys - 2; i += 8)
    {
      /* FIXME: gcc for x86_32 is smart enough to fetch the 32 low bits
	 and xor the result into the 32 high bits, but it still generates
	 worse code than for explicit 32-bit operations. */
      kw2 ^= (kw2 & ~subkey[i+1]) << 32;
      dw = (kw2 & subkey[i+1]) >> 32; kw2 ^= ROL32(1, dw); 

      subkey[i+3] ^= kw2;
      subkey[i+5] ^= kw2;
      subkey[i+7] ^= kw2;
304
    }
305 306
  subkey[i] ^= kw2;
  
307 308
  /* absorb kw4 to other subkeys */  
  kw4 = subkey[ctx->nkeys - 1];
309 310

  for (i = ctx->nkeys - 10; i > 0; i -= 8)
311
    {
312 313 314 315 316
      subkey[i+6] ^= kw4;
      subkey[i+4] ^= kw4;
      subkey[i+2] ^= kw4;
      kw4 ^= (kw4 & ~subkey[i]) << 32;
      dw = (kw4 & subkey[i]) >> 32; kw4 ^= ROL32(1, dw);      
317 318 319 320 321 322 323 324
    }

  subkey[6] ^= kw4;
  subkey[4] ^= kw4;
  subkey[2] ^= kw4;
  subkey[0] ^= kw4;

  /* key XOR is end of F-function */
325
  ctx->keys[0] = subkey[0] ^ subkey[2];
326
  ctx->keys[2] = subkey[3];
327

328 329 330 331 332
  ctx->keys[3] = subkey[2] ^ subkey[4];
  ctx->keys[4] = subkey[3] ^ subkey[5];
  ctx->keys[5] = subkey[4] ^ subkey[6];
  ctx->keys[6] = subkey[5] ^ subkey[7];

333
  for (i = 8; i < ctx->nkeys - 2; i += 8)
334
    {
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
      tl = (subkey[i+2] >> 32) ^ (subkey[i+2] & ~subkey[i]);
      dw = tl & (subkey[i] >> 32);
      tr = subkey[i+2] ^ ROL32(1, dw);
      ctx->keys[i-1] = subkey[i-2] ^ ( ((uint64_t) tl << 32) | tr);

      ctx->keys[i] = subkey[i];
      ctx->keys[i+1] = subkey[i+1];

      tl = (subkey[i-1] >> 32) ^ (subkey[i-1] & ~subkey[i+1]);
      dw = tl & (subkey[i+1] >> 32);
      tr = subkey[i-1] ^ ROL32(1, dw);
      ctx->keys[i+2] = subkey[i+3] ^ ( ((uint64_t) tl << 32) | tr);

      ctx->keys[i+3] = subkey[i+2] ^ subkey[i+4];
      ctx->keys[i+4] = subkey[i+3] ^ subkey[i+5];
      ctx->keys[i+5] = subkey[i+4] ^ subkey[i+6];
      ctx->keys[i+6] = subkey[i+5] ^ subkey[i+7];
352
    }
353 354 355
  ctx->keys[i-1] = subkey[i-2];
  ctx->keys[i] = subkey[i] ^ subkey[i-1];

356 357 358 359 360 361 362 363 364 365 366
  for (i = 0; i < ctx->nkeys - 2; i += 8)
    {
      /* apply the inverse of the last half of F-function */
      CAMELLIA_F_HALF_INV(ctx->keys[i+2]);
      CAMELLIA_F_HALF_INV(ctx->keys[i+3]);
      CAMELLIA_F_HALF_INV(ctx->keys[i+4]);
      CAMELLIA_F_HALF_INV(ctx->keys[i+5]);
      CAMELLIA_F_HALF_INV(ctx->keys[i+6]);
      CAMELLIA_F_HALF_INV(ctx->keys[i+7]);
    }
}