bignum-random-prime.c 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/* bignum-random-prime.c
 *
 * Generation of random provable primes.
 */

/* nettle, low-level cryptographics library
 *
 * Copyright (C) 2010 Niels Möller
 *  
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
 * The nettle library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with the nettle library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA.
 */

#if HAVE_CONFIG_H
# include "config.h"
#endif

#ifndef RANDOM_PRIME_VERBOSE
#define RANDOM_PRIME_VERBOSE 0
#endif

#include <assert.h>
#include <stdlib.h>

#if RANDOM_PRIME_VERBOSE
#include <stdio.h>
#define VERBOSE(x) (fputs((x), stderr))
#else
#define VERBOSE(x)
#endif

#include "bignum.h"

#include "macros.h"

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
/* Use a table of p_2 = 3 to p_{172} = 1021, used for sieving numbers
   of up to 20 bits. */

#define NPRIMES 171
#define TRIAL_DIV_BITS 20
#define TRIAL_DIV_MASK ((1 << TRIAL_DIV_BITS) - 1)

/* A 20-bit number x is divisible by p iff

     ((x * inverse) & TRIAL_DIV_MASK) <= limit
*/
struct trial_div_info {
  uint32_t inverse; /* p^{-1} (mod 2^20) */
  uint32_t limit;   /* floor( (2^20 - 1) / p) */
};

static const uint16_t
primes[NPRIMES] = {
  3,5,7,11,13,17,19,23,
  29,31,37,41,43,47,53,59,
  61,67,71,73,79,83,89,97,
  101,103,107,109,113,127,131,137,
  139,149,151,157,163,167,173,179,
  181,191,193,197,199,211,223,227,
  229,233,239,241,251,257,263,269,
  271,277,281,283,293,307,311,313,
  317,331,337,347,349,353,359,367,
  373,379,383,389,397,401,409,419,
  421,431,433,439,443,449,457,461,
  463,467,479,487,491,499,503,509,
  521,523,541,547,557,563,569,571,
  577,587,593,599,601,607,613,617,
  619,631,641,643,647,653,659,661,
  673,677,683,691,701,709,719,727,
  733,739,743,751,757,761,769,773,
  787,797,809,811,821,823,827,829,
  839,853,857,859,863,877,881,883,
  887,907,911,919,929,937,941,947,
  953,967,971,977,983,991,997,1009,
  1013,1019,1021,
};

static const uint32_t
prime_square[NPRIMES+1] = {
  9,25,49,121,169,289,361,529,
  841,961,1369,1681,1849,2209,2809,3481,
  3721,4489,5041,5329,6241,6889,7921,9409,
  10201,10609,11449,11881,12769,16129,17161,18769,
  19321,22201,22801,24649,26569,27889,29929,32041,
  32761,36481,37249,38809,39601,44521,49729,51529,
  52441,54289,57121,58081,63001,66049,69169,72361,
  73441,76729,78961,80089,85849,94249,96721,97969,
  100489,109561,113569,120409,121801,124609,128881,134689,
  139129,143641,146689,151321,157609,160801,167281,175561,
  177241,185761,187489,192721,196249,201601,208849,212521,
  214369,218089,229441,237169,241081,249001,253009,259081,
  271441,273529,292681,299209,310249,316969,323761,326041,
  332929,344569,351649,358801,361201,368449,375769,380689,
  383161,398161,410881,413449,418609,426409,434281,436921,
  452929,458329,466489,477481,491401,502681,516961,528529,
  537289,546121,552049,564001,573049,579121,591361,597529,
  619369,635209,654481,657721,674041,677329,683929,687241,
  703921,727609,734449,737881,744769,769129,776161,779689,
  786769,822649,829921,844561,863041,877969,885481,896809,
  908209,935089,942841,954529,966289,982081,994009,1018081,
  1026169,1038361,1042441,1L<<20
114 115
};

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
static const struct trial_div_info
trial_div_table[NPRIMES] = {
  {699051,349525},{838861,209715},{748983,149796},{953251,95325},
  {806597,80659},{61681,61680},{772635,55188},{866215,45590},
  {180789,36157},{1014751,33825},{793517,28339},{1023001,25575},
  {48771,24385},{870095,22310},{217629,19784},{710899,17772},
  {825109,17189},{281707,15650},{502135,14768},{258553,14364},
  {464559,13273},{934875,12633},{1001449,11781},{172961,10810},
  {176493,10381},{203607,10180},{568387,9799},{788837,9619},
  {770193,9279},{1032063,8256},{544299,8004},{619961,7653},
  {550691,7543},{182973,7037},{229159,6944},{427445,6678},
  {701195,6432},{370455,6278},{90917,6061},{175739,5857},
  {585117,5793},{225087,5489},{298817,5433},{228877,5322},
  {442615,5269},{546651,4969},{244511,4702},{83147,4619},
  {769261,4578},{841561,4500},{732687,4387},{978961,4350},
  {133683,4177},{65281,4080},{629943,3986},{374213,3898},
  {708079,3869},{280125,3785},{641833,3731},{618771,3705},
  {930477,3578},{778747,3415},{623751,3371},{40201,3350},
  {122389,3307},{950371,3167},{1042353,3111},{18131,3021},
  {285429,3004},{549537,2970},{166487,2920},{294287,2857},
  {919261,2811},{636339,2766},{900735,2737},{118605,2695},
  {10565,2641},{188273,2614},{115369,2563},{735755,2502},
  {458285,2490},{914767,2432},{370513,2421},{1027079,2388},
  {629619,2366},{462401,2335},{649337,2294},{316165,2274},
  {484655,2264},{65115,2245},{326175,2189},{1016279,2153},
  {990915,2135},{556859,2101},{462791,2084},{844629,2060},
  {404537,2012},{457123,2004},{577589,1938},{638347,1916},
  {892325,1882},{182523,1862},{1002505,1842},{624371,1836},
  {69057,1817},{210787,1786},{558769,1768},{395623,1750},
  {992745,1744},{317855,1727},{384877,1710},{372185,1699},
  {105027,1693},{423751,1661},{408961,1635},{908331,1630},
  {74551,1620},{36933,1605},{617371,1591},{506045,1586},
  {24929,1558},{529709,1548},{1042435,1535},{31867,1517},
  {166037,1495},{928781,1478},{508975,1458},{4327,1442},
  {779637,1430},{742091,1418},{258263,1411},{879631,1396},
  {72029,1385},{728905,1377},{589057,1363},{348621,1356},
  {671515,1332},{710453,1315},{84249,1296},{959363,1292},
  {685853,1277},{467591,1274},{646643,1267},{683029,1264},
  {439927,1249},{254461,1229},{660713,1223},{554195,1220},
  {202911,1215},{753253,1195},{941457,1190},{776635,1187},
  {509511,1182},{986147,1156},{768879,1151},{699431,1140},
  {696417,1128},{86169,1119},{808997,1114},{25467,1107},
  {201353,1100},{708087,1084},{1018339,1079},{341297,1073},
  {434151,1066},{96287,1058},{950765,1051},{298257,1039},
  {675933,1035},{167731,1029},{815445,1027},
161 162
};

163 164 165 166 167
/* Element j gives the index of the first prime of size 3+j bits */
static uint8_t
prime_by_size[9] = {
  1,3,5,10,17,30,53,96,171
};
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

/* Combined Miller-Rabin test to the base a, and checking the
   conditions from Pocklington's theorem. */
static int
miller_rabin_pocklington(mpz_t n, mpz_t nm1, mpz_t nm1dq, mpz_t a)
{
  mpz_t r;
  mpz_t y;
  int is_prime = 0;

  /* Avoid the mp_bitcnt_t type for compatibility with older GMP
     versions. */
  unsigned k;
  unsigned j;

  VERBOSE(".");

  if (mpz_even_p(n) || mpz_cmp_ui(n, 3) < 0)
    return 0;

  mpz_init(r);
  mpz_init(y);

  k = mpz_scan1(nm1, 0);
  assert(k > 0);

  mpz_fdiv_q_2exp (r, nm1, k);

  mpz_powm(y, a, r, n);

  if (mpz_cmp_ui(y, 1) == 0 || mpz_cmp(y, nm1) == 0)
199 200
    goto passed_miller_rabin;
    
201 202 203 204 205 206
  for (j = 1; j < k; j++)
    {
      mpz_powm_ui (y, y, 2, n);

      if (mpz_cmp_ui (y, 1) == 0)
	break;
207

208
      if (mpz_cmp (y, nm1) == 0)
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
	{
	passed_miller_rabin:
	  /* We know that a^{n-1} = 1 (mod n)

	     Remains to check that gcd(a^{(n-1)/q} - 1, n) == 1 */      
	  VERBOSE("x");

	  mpz_powm(y, a, nm1dq, n);
	  mpz_sub_ui(y, y, 1);
	  mpz_gcd(y, y, n);
	  is_prime = mpz_cmp_ui (y, 1) == 0;
	  VERBOSE(is_prime ? "\n" : "");
	  break;
	}

224 225 226 227 228 229 230 231
    }

  mpz_clear(r);
  mpz_clear(y);

  return is_prime;
}

232 233 234
/* The algorithm is based on the following special case of
   Pocklington's theorem:

235
   Assume that n = 1 + f q, where q is a prime, q > sqrt(n) - 1. If we
236 237 238
   can find an a such that

     a^{n-1} = 1 (mod n)
239
     gcd(a^f - 1, n) = 1
240 241 242 243 244 245 246 247 248 249 250 251 252 253

   then n is prime.

   Proof: Assume that n is composite, with smallest prime factor p <=
   sqrt(n). Since q is prime, and q > sqrt(n) - 1 >= p - 1, q and p-1
   are coprime, so that we can define u = q^{-1} (mod (p-1)). The
   assumption a^{n-1} = 1 (mod n) implies that also a^{n-1} = 1 (mod
   p). Since p is prime, we have a^{(p-1)} = 1 (mod p). Now, r =
   (n-1)/q = (n-1) u (mod (p-1)), and it follows that a^r = a^{(n-1)
   u} = 1 (mod p). Then p is a common factor of a^r - 1 and n. This
   contradicts gcd(a^r - 1, n) = 1, and concludes the proof.

   If n is specified as k bits, we need q of size ceil(k/2) + 1 bits
   (or more) to make the theorem apply.
254 255 256 257 258
*/

/* Generate a prime number p of size bits with 2 p0q dividing (p-1).
   p0 must be of size >= ceil(bits/2) + 1. The extra factor q can be
   omitted. */
259
void
260
_nettle_generate_pocklington_prime (mpz_t p, unsigned bits, mpz_t r,
261 262 263 264
				    void *ctx, nettle_random_func random, 
				    const mpz_t p0,
				    const mpz_t q,
				    const mpz_t p0q)
265
{
266
  mpz_t i, pm1,a;
267 268 269 270 271 272 273 274 275 276 277 278 279
  
  assert (2*mpz_sizeinbase (p0, 2) > bits + 1);

  mpz_init (i);
  mpz_init (pm1);
  mpz_init (a);

  /* i = floor (2^{bits-2} / p0q) */
  mpz_init_set_ui (i, 1);
  mpz_mul_2exp (i, i, bits-2);
  mpz_fdiv_q (i, i, p0q);

  for (;;)
280
    {
281
      uint8_t buf[1];
282

283 284 285 286
      /* Generate r in the range i + 1 <= r <= 2*i */
      nettle_mpz_random (r, ctx, random, i);
      mpz_add (r, r, i);
      mpz_add_ui (r, r, 1);
287

288 289 290 291
      /* Set p = 2*r*p0q + 1 */
      mpz_mul_2exp(r, r, 1);
      mpz_mul (pm1, r, p0q);
      mpz_add_ui (p, pm1, 1);
292

293 294 295 296 297 298 299 300 301 302 303 304 305
      assert(mpz_sizeinbase(p, 2) == bits);

      /* Should use GMP trial division interface when that
	 materializes, we don't need any testing beyond trial
	 division. */
      if (!mpz_probab_prime_p (p, 1))
	continue;

      random(ctx, sizeof(buf), buf);
	  
      mpz_set_ui (a, buf[0] + 2);

      if (q)
306 307 308 309 310 311 312 313 314 315 316 317 318 319
	{
	  mpz_t e;
	  int is_prime;
	  
	  mpz_init (e);

	  mpz_mul (e, r, q);
	  is_prime = miller_rabin_pocklington(p, pm1, e, a);
	  mpz_clear (e);

	  if (is_prime)
	    break;
	}
      else if (miller_rabin_pocklington(p, pm1, r, a))
320 321 322 323 324 325
	break;
    }
  mpz_clear (i);
  mpz_clear (pm1);
  mpz_clear (a);
}
326

327 328 329 330 331 332 333 334 335 336 337 338 339 340
/* Generate random prime of a given size. Maurer's algorithm (Alg.
   6.42 Handbook of applied cryptography), but with ratio = 1/2 (like
   the variant in fips186-3). FIXME: Force primes to start with two
   one bits? */
void
nettle_random_prime(mpz_t p, unsigned bits,
		    void *ctx, nettle_random_func random)
{
  assert (bits >= 3);
  if (bits <= 10)
    {
      unsigned first;
      unsigned choices;
      uint8_t buf;
341

342
      random (ctx, sizeof(buf), &buf);
343

344 345 346 347 348 349 350 351 352 353 354
      first = prime_by_size[bits-3];
      choices = prime_by_size[bits-2] - first;
      
      mpz_set_ui (p, primes[first + buf % choices]);
    }
  else if (bits <= 20)
    {
      unsigned long highbit;
      uint8_t buf[3];
      unsigned long x;
      unsigned j;
355 356 357 358 359 360 361 362 363
      
      highbit = 1L << (bits - 1);

    again:
      random (ctx, sizeof(buf), buf);
      x = READ_UINT24(buf);
      x &= (highbit - 1);
      x |= highbit | 1;

364 365 366 367 368 369 370
      for (j = 0; prime_square[j] <= x; j++)
	{
	  unsigned q = x * trial_div_table[j].inverse & TRIAL_DIV_MASK;
	  if (q <= trial_div_table[j].limit)
	    goto again;
	}
      mpz_set_ui (p, x);
371 372 373
    }
  else
    {
374
      mpz_t q, r;
375 376

      mpz_init (q);
377
      mpz_init (r);
378

379 380 381
     /* Bit size ceil(k/2) + 1, slightly larger than used in Alg. 4.62
	in Handbook of Applied Cryptography (which seems to be
	incorrect for odd k). */
382 383
      nettle_random_prime (q, (bits+3)/2, ctx, random);

384
      _nettle_generate_pocklington_prime (p, bits, r, ctx, random,
385 386
					  q, NULL, q);
      
387
      mpz_clear (q);
388
      mpz_clear (r);
389 390
    }
}