rsa-keygen.c 5.38 KB
Newer Older
Niels Möller's avatar
Niels Möller committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/* rsa-keygen.c
 *
 * Generation of RSA keypairs
 */

/* nettle, low-level cryptographics library
 *
 * Copyright (C) 2002 Niels Mller
 *  
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
 * The nettle library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with the nettle library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA.
 */

#if HAVE_CONFIG_H
27
# include "config.h"
Niels Möller's avatar
Niels Möller committed
28
29
30
31
32
#endif

#include <assert.h>
#include <stdlib.h>

33
34
35
#include "rsa.h"
#include "bignum.h"

Niels Möller's avatar
Niels Möller committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#ifndef DEBUG
# define DEBUG 0
#endif

#if DEBUG
# include <stdio.h>
#endif


/* Returns a random prime of size BITS */
static void
bignum_random_prime(mpz_t x, unsigned bits,
		    void *random_ctx, nettle_random_func random,
		    void *progress_ctx, nettle_progress_func progress)
{
  assert(bits);
  
  for (;;)
    {
Niels Möller's avatar
Niels Möller committed
55
      nettle_mpz_random_size(x, random_ctx, random, bits);
Niels Möller's avatar
Niels Möller committed
56
57
58
      mpz_setbit(x, bits - 1);

      /* Miller-rabin count of 25 is probably much overkill. */
59
      nettle_next_prime(x, x, 25, 10000, progress_ctx, progress);
Niels Möller's avatar
Niels Möller committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

      if (mpz_sizeinbase(x, 2) == bits)
	break;
    }
}

int
rsa_generate_keypair(struct rsa_public_key *pub,
		     struct rsa_private_key *key,
		     void *random_ctx, nettle_random_func random,
		     void *progress_ctx, nettle_progress_func progress,
		     unsigned n_size,
		     unsigned e_size)
{
  mpz_t p1;
  mpz_t q1;
  mpz_t phi;
  mpz_t tmp;

  if (e_size)
    {
      /* We should choose e randomly. Is the size reasonable? */
      if ((e_size < 16) || (e_size > n_size) )
	return 0;
    }
  else
    {
      /* We have a fixed e. Check that it makes sense */

      /* It must be odd */
      if (!mpz_tstbit(pub->e, 0))
	return 0;

      /* And 3 or larger */
      if (mpz_cmp_ui(pub->e, 3) < 0)
	return 0;
    }
  
  if (n_size < RSA_MINIMUM_N_BITS)
    return 0;
  
  mpz_init(p1); mpz_init(q1); mpz_init(phi); mpz_init(tmp);

  /* Generate primes */
  for (;;)
    {
      /* Generate p, such that gcd(p-1, e) = 1 */
      for (;;)
	{
	  bignum_random_prime(key->p, (n_size+1)/2,
			      random_ctx, random,
			      progress_ctx, progress);
	  mpz_sub_ui(p1, key->p, 1);
      
	  /* If e was given, we must chose p such that p-1 has no factors in
	   * common with e. */
	  if (e_size)
	    break;
	  
	  mpz_gcd(tmp, pub->e, p1);

	  if (mpz_cmp_ui(tmp, 1) == 0)
	    break;
	  else if (progress) progress(progress_ctx, 'c');
	} 

      if (progress)
	progress(progress_ctx, '\n');
      
      /* Generate q, such that gcd(q-1, e) = 1 */
      for (;;)
	{
	  bignum_random_prime(key->q, n_size/2,
			      random_ctx, random,
			      progress_ctx, progress);
	  mpz_sub_ui(q1, key->q, 1);
      
	  /* If e was given, we must chose q such that q-1 has no factors in
	   * common with e. */
	  if (e_size)
	    break;
	  
	  mpz_gcd(tmp, pub->e, q1);

	  if (mpz_cmp_ui(tmp, 1) == 0)
	    break;
	  else if (progress) progress(progress_ctx, 'c');
	}

      /* Now we have the primes. Is the product of the right size? */
      mpz_mul(pub->n, key->p, key->q);
      
      if (mpz_sizeinbase(pub->n, 2) != n_size)
	/* We might get an n of size n_size-1. Then just try again. */
	{
#if DEBUG
	  fprintf(stderr,
		  "\nWanted size: %d, p-size: %d, q-size: %d, n-size: %d\n",
		  n_size,
		  mpz_sizeinbase(key->p,2),
		  mpz_sizeinbase(key->q,2),
		  mpz_sizeinbase(pub->n,2));
#endif
	  if (progress)
	    {
	      progress(progress_ctx, 'b');
	      progress(progress_ctx, '\n');
	    }
	  continue;
	}
      
      if (progress)
	progress(progress_ctx, '\n');

      /* c = q^{-1} (mod p) */
      if (mpz_invert(key->c, key->q, key->p))
	/* This should succeed everytime. But if it doesn't,
	 * we try again. */
	break;
      else if (progress) progress(progress_ctx, '?');
    }

  mpz_mul(phi, p1, q1);
  
  /* If we didn't have a given e, generate one now. */
  if (e_size)
186
187
188
189
    {
      int retried = 0;
      for (;;)
	{
Niels Möller's avatar
Niels Möller committed
190
191
192
	  nettle_mpz_random_size(pub->e,
				 random_ctx, random,
				 e_size);
Niels Möller's avatar
Niels Möller committed
193
	
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
	  /* Make sure it's odd and that the most significant bit is
	   * set */
	  mpz_setbit(pub->e, 0);
	  mpz_setbit(pub->e, e_size - 1);

	  /* Needs gmp-3, or inverse might be negative. */
	  if (mpz_invert(key->d, pub->e, phi))
	    break;

	  if (progress) progress(progress_ctx, 'e');
	  retried = 1;
	}
      if (retried && progress)
	progress(progress_ctx, '\n');	
    }
Niels Möller's avatar
Niels Möller committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
  else
    {
      /* Must always succeed, as we already that e
       * doesn't have any common factor with p-1 or q-1. */
      int res = mpz_invert(key->d, pub->e, phi);
      assert(res);
    }

  /* Done! Almost, we must compute the auxillary private values. */
  /* a = d % (p-1) */
  mpz_fdiv_r(key->a, key->d, p1);

  /* b = d % (q-1) */
  mpz_fdiv_r(key->b, key->d, q1);

  /* c was computed earlier */

  pub->size = key->size = (mpz_sizeinbase(pub->n, 2) + 7) / 8;
  assert(pub->size >= RSA_MINIMUM_N_OCTETS);
  
  mpz_clear(p1); mpz_clear(q1); mpz_clear(phi); mpz_clear(tmp);

  return 1;
}