ecc-25519.c 9.11 KB
Newer Older
Niels Möller's avatar
Niels Möller committed
1
/* ecc-25519.c
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

   Arithmetic and tables for curve25519,

   Copyright (C) 2014 Niels Möller

   This file is part of GNU Nettle.

   GNU Nettle is free software: you can redistribute it and/or
   modify it under the terms of either:

     * the GNU Lesser General Public License as published by the Free
       Software Foundation; either version 3 of the License, or (at your
       option) any later version.

   or

     * the GNU General Public License as published by the Free
       Software Foundation; either version 2 of the License, or (at your
       option) any later version.

   or both in parallel, as here.

   GNU Nettle is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received copies of the GNU General Public License and
   the GNU Lesser General Public License along with this program.  If
   not, see http://www.gnu.org/licenses/.
*/

#if HAVE_CONFIG_H
# include "config.h"
#endif

Niels Möller's avatar
Niels Möller committed
38 39
#include <assert.h>

40
#include "ecc.h"
41 42 43 44 45 46
#include "ecc-internal.h"

#define USE_REDC 0

#include "ecc-25519.h"

47 48
#define PHIGH_BITS (GMP_NUMB_BITS * ECC_LIMB_SIZE - 255)

49 50 51 52
#if HAVE_NATIVE_ecc_25519_modp

#define ecc_25519_modp nettle_ecc_25519_modp
void
53
ecc_25519_modp (const struct ecc_modulo *m, mp_limb_t *rp);
54 55
#else

Niels Möller's avatar
Niels Möller committed
56
#if PHIGH_BITS == 0
57 58 59 60
#error Unsupported limb size */
#endif

static void
61
ecc_25519_modp(const struct ecc_modulo *m UNUSED, mp_limb_t *rp)
62 63 64 65
{
  mp_limb_t hi, cy;

  cy = mpn_addmul_1 (rp, rp + ECC_LIMB_SIZE, ECC_LIMB_SIZE,
Niels Möller's avatar
Niels Möller committed
66
		     (mp_limb_t) 19 << PHIGH_BITS);
67
  hi = rp[ECC_LIMB_SIZE-1];
Niels Möller's avatar
Niels Möller committed
68 69
  cy = (cy << PHIGH_BITS) + (hi >> (GMP_NUMB_BITS - PHIGH_BITS));
  rp[ECC_LIMB_SIZE-1] = (hi & (GMP_NUMB_MASK >> PHIGH_BITS))
70 71
    + sec_add_1 (rp, rp, ECC_LIMB_SIZE - 1, 19 * cy);
}
72 73
#endif /* HAVE_NATIVE_ecc_25519_modp */

Niels Möller's avatar
Niels Möller committed
74 75 76 77 78 79 80
#define QHIGH_BITS (GMP_NUMB_BITS * ECC_LIMB_SIZE - 252)

#if QHIGH_BITS == 0
#error Unsupported limb size */
#endif

static void
81
ecc_25519_modq (const struct ecc_modulo *q, mp_limb_t *rp)
Niels Möller's avatar
Niels Möller committed
82 83 84 85 86 87 88 89
{
  mp_size_t n;
  mp_limb_t cy;

  /* n is the offset where we add in the next term */
  for (n = ECC_LIMB_SIZE; n-- > 0;)
    {
      cy = mpn_submul_1 (rp + n,
90
			 q->B_shifted, ECC_LIMB_SIZE,
Niels Möller's avatar
Niels Möller committed
91 92 93
			 rp[n + ECC_LIMB_SIZE]);
      /* Top limb of mBmodq_shifted is zero, so we get cy == 0 or 1 */
      assert (cy < 2);
94
      cnd_add_n (cy, rp+n, q->m, ECC_LIMB_SIZE);
Niels Möller's avatar
Niels Möller committed
95 96
    }

97
  cy = mpn_submul_1 (rp, q->m, ECC_LIMB_SIZE,
Niels Möller's avatar
Niels Möller committed
98 99
		     rp[ECC_LIMB_SIZE-1] >> (GMP_NUMB_BITS - QHIGH_BITS));
  assert (cy < 2);
100
  cnd_add_n (cy, rp, q->m, ECC_LIMB_SIZE);
Niels Möller's avatar
Niels Möller committed
101 102
}

103 104 105
/* Needs 2*ecc->size limbs at rp, and 2*ecc->size additional limbs of
   scratch space. No overlap allowed. */
static void
106 107 108
ecc_mod_pow_2kp1 (const struct ecc_modulo *m,
		  mp_limb_t *rp, const mp_limb_t *xp,
		  unsigned k, mp_limb_t *tp)
109 110 111
{
  if (k & 1)
    {
112
      ecc_mod_sqr (m, tp, xp);
113 114 115 116
      k--;
    }
  else
    {
117 118
      ecc_mod_sqr (m, rp, xp);
      ecc_mod_sqr (m, tp, rp);
119 120 121 122
      k -= 2;
    }
  while (k > 0)
    {
123 124
      ecc_mod_sqr (m, rp, tp);
      ecc_mod_sqr (m, tp, rp);
125 126
      k -= 2;
    }
127 128 129
  ecc_mod_mul (m, rp, tp, xp);
}

Niels Möller's avatar
Niels Möller committed
130
/* Computes a^{(p-5)/8} = a^{2^{252}-3} mod m. Needs 5 * n scratch
131
   space. */
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
static void
ecc_mod_pow_252m3 (const struct ecc_modulo *m,
		   mp_limb_t *rp, const mp_limb_t *ap, mp_limb_t *scratch)
{
#define a7 scratch
#define t0 (scratch + ECC_LIMB_SIZE)
#define t1 (scratch + 3*ECC_LIMB_SIZE)

  /* a^{2^252 - 3} = a^{(p-5)/8}, using the addition chain
     2^252 - 3
     = 1 + (2^252-4)
     = 1 + 4 (2^250-1)
     = 1 + 4 (2^125+1)(2^125-1)
     = 1 + 4 (2^125+1)(1+2(2^124-1))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^62-1))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(2^31-1))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^28-1)))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^14+1)(2^14-1)))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^14+1)(2^7+1)(2^7-1)))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^14+1)(2^7+1)(1+2(2^6-1))))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^14+1)(2^7+1)(1+2(2^3+1)*7)))
  */ 
     
  ecc_mod_pow_2kp1 (m, t0, ap, 1, t1);	/* a^3 */
  ecc_mod_sqr (m, rp, t0);		/* a^6 */
  ecc_mod_mul (m, a7, rp, ap);		/* a^7 */
  ecc_mod_pow_2kp1 (m, rp, a7, 3, t0);	/* a^63 = a^{2^6-1} */
  ecc_mod_sqr (m, t0, rp);		/* a^{2^7-2} */
  ecc_mod_mul (m, rp, t0, ap);		/* a^{2^7-1} */
  ecc_mod_pow_2kp1 (m, t0, rp, 7, t1);	/* a^{2^14-1}*/
  ecc_mod_pow_2kp1 (m, rp, t0, 14, t1);	/* a^{2^28-1} */
  ecc_mod_sqr (m, t0, rp);		/* a^{2^29-2} */
  ecc_mod_sqr (m, t1, t0);		/* a^{2^30-4} */
  ecc_mod_sqr (m, t0, t1);		/* a^{2^31-8} */
  ecc_mod_mul (m, rp, t0, a7);		/* a^{2^31-1} */
  ecc_mod_pow_2kp1 (m, t0, rp, 31, t1);	/* a^{2^62-1} */  
  ecc_mod_pow_2kp1 (m, rp, t0, 62, t1);	/* a^{2^124-1}*/
  ecc_mod_sqr (m, t0, rp);		/* a^{2^125-2} */
  ecc_mod_mul (m, rp, t0, ap);		/* a^{2^125-1} */
  ecc_mod_pow_2kp1 (m, t0, rp, 125, t1);/* a^{2^250-1} */
  ecc_mod_sqr (m, rp, t0);		/* a^{2^251-2} */
  ecc_mod_sqr (m, t0, rp);		/* a^{2^252-4} */
  ecc_mod_mul (m, rp, t0, ap);	    	/* a^{2^252-3} */
#undef t0
176
#undef t1
177
#undef a7
178 179
}

180 181 182 183 184 185 186 187 188 189
/* Needs 5*ECC_LIMB_SIZE scratch space. */
#define ECC_25519_INV_ITCH (5*ECC_LIMB_SIZE)

static void ecc_25519_inv (const struct ecc_modulo *p,
			   mp_limb_t *rp, const mp_limb_t *ap,
			   mp_limb_t *scratch)
{
#define t0 scratch

  /* Addition chain
190

191
       p - 2 = 2^{255} - 21
192
             = 1 + 2 (1 + 4 (2^{252}-3))
193 194 195 196 197 198 199 200 201 202
  */
  ecc_mod_pow_252m3 (p, rp, ap, t0);
  ecc_mod_sqr (p, t0, rp);
  ecc_mod_sqr (p, rp, t0);
  ecc_mod_mul (p, t0, ap, rp);
  ecc_mod_sqr (p, rp, t0);
  ecc_mod_mul (p, t0, ap, rp);
  mpn_copyi (rp, t0, ECC_LIMB_SIZE); /* FIXME: Eliminate copy? */
#undef t0
}
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

/* First, do a canonical reduction, then check if zero */
static int
ecc_25519_zero_p (const struct ecc_modulo *p, mp_limb_t *xp)
{
  mp_limb_t cy;
  mp_limb_t w;
  mp_size_t i;
#if PHIGH_BITS > 0
  mp_limb_t hi = xp[ECC_LIMB_SIZE-1];
  xp[ECC_LIMB_SIZE-1] = (hi & (GMP_NUMB_MASK >> PHIGH_BITS))
    + sec_add_1 (xp, xp, ECC_LIMB_SIZE - 1, 19 * (hi >> (GMP_NUMB_BITS - PHIGH_BITS)));
#endif
  cy = mpn_sub_n (xp, xp, p->m, ECC_LIMB_SIZE);
  cnd_add_n (cy, xp, p->m, ECC_LIMB_SIZE);

  for (i = 0, w = 0; i < ECC_LIMB_SIZE; i++)
    w |= xp[i];
  return w == 0;
}

/* Compute x such that x^2 = u/v (mod p). Returns one on success, zero
   on failure. We use the e = 2 special case of the Shanks-Tonelli
226
   algorithm (see http://www.math.vt.edu/people/brown/doc/sqrts.pdf,
227
   or Henri Cohen, Computational Algebraic Number Theory, 1.5.1).
228

229 230 231 232 233
   To avoid a separate inversion, we also use a trick of djb's, to
   compute the candidate root as

     x = (u/v)^{(p+3)/8} = u v^3 (u v^7)^{(p-5)/8}.
*/
234 235 236 237
#if ECC_SQRT_E != 2
#error Broken curve25519 parameters
#endif

238 239
/* Needs 4*n space + scratch for ecc_mod_pow_252m3. */
#define ECC_25519_SQRT_ITCH (9*ECC_LIMB_SIZE)
240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
static int
ecc_25519_sqrt(const struct ecc_modulo *p, mp_limb_t *rp,
	       const mp_limb_t *up, const mp_limb_t *vp,
	       mp_limb_t *scratch)
{
  int pos, neg;

#define uv3 scratch
#define uv7 (scratch + ECC_LIMB_SIZE)
#define uv7p (scratch + 2*ECC_LIMB_SIZE)
#define v2 (scratch + 2*ECC_LIMB_SIZE)
#define uv (scratch + 3*ECC_LIMB_SIZE)
#define v4 (scratch + 3*ECC_LIMB_SIZE)

#define scratch_out (scratch + 4 * ECC_LIMB_SIZE)

#define x2 scratch
#define vx2 (scratch + ECC_LIMB_SIZE)
#define t0 (scratch + 2*ECC_LIMB_SIZE)

					/* Live values */
  ecc_mod_sqr (p, v2, vp);		/* v2 */
  ecc_mod_mul (p, uv, up, vp);		/* uv, v2 */
  ecc_mod_mul (p, uv3, uv, v2);		/* uv3, v2 */
  ecc_mod_sqr (p, v4, v2);		/* uv3, v4 */
  ecc_mod_mul (p, uv7, uv3, v4);	/* uv3, uv7 */
  ecc_mod_pow_252m3 (p, uv7p, uv7, scratch_out); /* uv3, uv7p */
  ecc_mod_mul (p, rp, uv7p, uv3);	/* none */

  /* Check sign. If square root exists, have v x^2 = ±u */
  ecc_mod_sqr (p, x2, rp);
  ecc_mod_mul (p, vx2, x2, vp);
  ecc_mod_add (p, t0, vx2, up);
  neg = ecc_25519_zero_p (p, t0);
  ecc_mod_sub (p, t0, up, vx2);
  pos = ecc_25519_zero_p (p, t0);

  ecc_mod_mul (p, t0, rp, ecc_sqrt_z);
  cnd_copy (neg, rp, t0, ECC_LIMB_SIZE);
  return pos | neg;

#undef uv3
#undef uv7
#undef uv7p
#undef v2
#undef v4
#undef scratch_out
#undef x2
#undef vx2
290 291
#undef t0
}
292

293
const struct ecc_curve _nettle_curve25519 =
294
{
Niels Möller's avatar
Niels Möller committed
295 296 297 298 299
  {
    255,
    ECC_LIMB_SIZE,
    ECC_BMODP_SIZE,
    0,
300
    ECC_25519_INV_ITCH,
301
    ECC_25519_SQRT_ITCH,
302

Niels Möller's avatar
Niels Möller committed
303 304 305 306
    ecc_p,
    ecc_Bmodp,
    ecc_Bmodp_shifted,
    NULL,
307 308
    ecc_pp1h,

309 310
    ecc_25519_modp,
    ecc_25519_modp,
311
    ecc_25519_inv,
312
    ecc_25519_sqrt,
Niels Möller's avatar
Niels Möller committed
313 314 315 316 317 318
  },
  {
    253,
    ECC_LIMB_SIZE,
    ECC_BMODQ_SIZE,
    0,
319
    ECC_MOD_INV_ITCH (ECC_LIMB_SIZE),
320
    0,
321

Niels Möller's avatar
Niels Möller committed
322 323 324 325
    ecc_q,
    ecc_Bmodq,  
    ecc_mBmodq_shifted, /* Use q - 2^{252} instead. */
    NULL,
326 327
    ecc_qp1h,

328 329
    ecc_25519_modq,
    ecc_25519_modq,
330
    ecc_mod_inv,
331
    NULL,
Niels Möller's avatar
Niels Möller committed
332 333
  },

334 335 336
  0, /* No redc */
  ECC_PIPPENGER_K,
  ECC_PIPPENGER_C,
337

338
  ECC_ADD_EH_ITCH (ECC_LIMB_SIZE),
339
  ECC_ADD_EHH_ITCH (ECC_LIMB_SIZE),
340
  ECC_DUP_EH_ITCH (ECC_LIMB_SIZE),
341 342
  ECC_MUL_A_EH_ITCH (ECC_LIMB_SIZE),
  ECC_MUL_G_EH_ITCH (ECC_LIMB_SIZE),
343
  ECC_EH_TO_A_ITCH (ECC_LIMB_SIZE, ECC_25519_INV_ITCH),
344

345
  ecc_add_eh,
346
  ecc_add_ehh,
347
  ecc_dup_eh,
348 349 350 351
  ecc_mul_a_eh,
  ecc_mul_g_eh,
  ecc_eh_to_a,

352
  ecc_b, /* Edwards curve constant. */
353 354 355 356
  ecc_g,
  ecc_unit,
  ecc_table
};