twofish.c 18.1 KB
Newer Older
1
2
/* twofish.c
 *
3
 * The twofish block cipher.
4
 */
5

6
/* twofish - An implementation of the twofish cipher.
Ruud de Rooij's avatar
Ruud de Rooij committed
7
8
9
10
11
 * Copyright (C) 1999 Ruud de Rooij <ruud@debian.org>
 *
 * Modifications for lsh, integrated testing
 * Copyright (C) 1999 J.H.M. Dassen (Ray) <jdassen@wi.LeidenUniv.nl>
 *
12
13
 * Integrated with the nettle library,
 * Copyright (C) 2001 Niels Mller
Ruud de Rooij's avatar
Ruud de Rooij committed
14
15
 */

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/* nettle, low-level cryptographics library
 *
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
 * The GNU MP Library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA.
Ruud de Rooij's avatar
Ruud de Rooij committed
32
33
 */

34
#include "twofish.h"
Ruud de Rooij's avatar
Ruud de Rooij committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

/* Bitwise rotations on 32-bit words.  These are defined as macros that
 * evaluate their argument twice, so do not apply to any expressions with
 * side effects.
 */

#define rol1(x) (((x) << 1) | (((x) & 0x80000000) >> 31))
#define rol8(x) (((x) << 8) | (((x) & 0xFF000000) >> 24))
#define rol9(x) (((x) << 9) | (((x) & 0xFF800000) >> 23))
#define ror1(x) (((x) >> 1) | (((x) & 0x00000001) << 31))

/* void bytes_to_words(word * dest, const byte * src, int n);
 * void words_to_bytes(byte * dest, const byte * src, int n);
 *
 * Copy n*4 bytes to n words and vice versa.
 */

#if defined(__i386__)

/* In the i386 case, these are simply memcpy's since the memory layout
 * of an array of bytes and an array of words is identical.
 */

#define bytes_to_words(dest,src,n) memcpy(dest,src,(n)*4)
#define words_to_bytes(dest,src,n) memcpy(dest,src,(n)*4)

#else

/* These versions are independent of endianness and word size. */

static void
bytes_to_words(word *dest, const byte *src, int n)
{
68
69
70
71
  while (n-- > 0)
    {
      *dest++ = src[0] | src[1] << 8 | src[2] << 16 | src[3] << 24;
      src += 4;
Ruud de Rooij's avatar
Ruud de Rooij committed
72
73
74
75
76
77
    }
}

static void
words_to_bytes(byte *dest, const word *src, int n)
{
78
79
80
81
82
83
84
  while (n-- > 0)
    {
      *dest++ = *src;
      *dest++ = *src >> 8;
      *dest++ = *src >> 16;
      *dest++ = *src >> 24;
      src++;
Ruud de Rooij's avatar
Ruud de Rooij committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    }
}

#endif

/* ------------------------------------------------------------------------- */

/* The permutations q0 and q1.  These are fixed permutations on 8-bit values.
 * The permutations have been computed using the program generate_q
 * which is distributed along with this file.
 */

static byte q0[] = { 0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76,
                     0x9A, 0x92, 0x80, 0x78, 0xE4, 0xDD, 0xD1, 0x38,
                     0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C,
                     0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48,
                     0xF2, 0xD0, 0x8B, 0x30, 0x84, 0x54, 0xDF, 0x23,
                     0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
                     0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C,
                     0xA6, 0xEB, 0xA5, 0xBE, 0x16, 0x0C, 0xE3, 0x61,
                     0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B,
                     0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1,
                     0xE1, 0xE6, 0xBD, 0x45, 0xE2, 0xF4, 0xB6, 0x66,
                     0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
                     0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA,
                     0xEA, 0x77, 0x39, 0xAF, 0x33, 0xC9, 0x62, 0x71,
                     0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8,
                     0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7,
                     0xA1, 0x1D, 0xAA, 0xED, 0x06, 0x70, 0xB2, 0xD2,
                     0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
                     0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB,
                     0x9E, 0x9C, 0x52, 0x1B, 0x5F, 0x93, 0x0A, 0xEF,
                     0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B,
                     0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64,
                     0x2A, 0xCE, 0xCB, 0x2F, 0xFC, 0x97, 0x05, 0x7A,
                     0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
                     0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02,
                     0xB8, 0xDA, 0xB0, 0x17, 0x55, 0x1F, 0x8A, 0x7D,
                     0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72,
                     0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34,
                     0x6E, 0x50, 0xDE, 0x68, 0x65, 0xBC, 0xDB, 0xF8,
                     0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
                     0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00,
                     0x6F, 0x9D, 0x36, 0x42, 0x4A, 0x5E, 0xC1, 0xE0, };

static byte q1[] = { 0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8,
                     0x4A, 0xD3, 0xE6, 0x6B, 0x45, 0x7D, 0xE8, 0x4B,
                     0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1,
                     0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F,
                     0x5E, 0xBA, 0xAE, 0x5B, 0x8A, 0x00, 0xBC, 0x9D,
                     0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
                     0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3,
                     0xB2, 0x73, 0x4C, 0x54, 0x92, 0x74, 0x36, 0x51,
                     0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96,
                     0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C,
                     0x13, 0x95, 0x9C, 0xC7, 0x24, 0x46, 0x3B, 0x70,
                     0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
                     0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC,
                     0x03, 0x6F, 0x08, 0xBF, 0x40, 0xE7, 0x2B, 0xE2,
                     0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9,
                     0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17,
                     0x66, 0x94, 0xA1, 0x1D, 0x3D, 0xF0, 0xDE, 0xB3,
                     0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
                     0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49,
                     0x81, 0x88, 0xEE, 0x21, 0xC4, 0x1A, 0xEB, 0xD9,
                     0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01,
                     0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48,
                     0x4F, 0xF2, 0x65, 0x8E, 0x78, 0x5C, 0x58, 0x19,
                     0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
                     0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5,
                     0xCE, 0xE9, 0x68, 0x44, 0xE0, 0x4D, 0x43, 0x69,
                     0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E,
                     0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC,
                     0x22, 0xC9, 0xC0, 0x9B, 0x89, 0xD4, 0xED, 0xAB,
                     0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
                     0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2,
                     0x16, 0x25, 0x86, 0x56, 0x55, 0x09, 0xBE, 0x91, };

/* ------------------------------------------------------------------------- */

/* byte gf_multiply(byte p, byte a, byte b)
 *
 * Multiplication in GF(2^8).
 *
 * This function multiplies a times b in the Galois Field GF(2^8) with
 * primitive polynomial p.
 * The representation of the polynomials a, b, and p uses bits with
 * values 2^i to represent the terms x^i.  The polynomial p contains an
 * implicit term x^8.
 *
 * Note that addition and subtraction in GF(2^8) is simply the XOR
 * operation.
 */

static byte
gf_multiply(byte p, byte a, byte b)
{
182
183
184
185
186
187
188
189
  word shift  = b;
  byte result = 0;
  while (a)
    {
      if (a & 1) result ^= shift;
      a = a >> 1;
      shift = shift << 1;
      if (shift & 0x100) shift ^= p;
Ruud de Rooij's avatar
Ruud de Rooij committed
190
    }
191
  return result;
Ruud de Rooij's avatar
Ruud de Rooij committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
}

/* ------------------------------------------------------------------------- */

/* The matrix RS as specified in section 4.3 the twofish paper. */

static byte rs_matrix[4][8] = {
    { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E },
    { 0xA4, 0x56, 0x82, 0xF3, 0x1E, 0xC6, 0x68, 0xE5 },
    { 0x02, 0xA1, 0xFC, 0xC1, 0x47, 0xAE, 0x3D, 0x19 },
    { 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E, 0x03 } };

/* word compute_s(word m1, word m2);
 *
 * Computes the value RS * M, where M is a byte vector composed of the
 * bytes of m1 and m2.  Arithmetic is done in GF(2^8) with primitive
 * polynomial x^8 + x^6 + x^3 + x^2 + 1.
 *
 * This function is used to compute the sub-keys S which are in turn used
 * to generate the S-boxes.
 */

static word
compute_s(word m1, word m2)
{
217
218
219
220
221
222
223
224
225
226
227
228
  word s = 0;
  int i;
  for (i = 0; i < 4; i++)
    s |=  ((  gf_multiply(0x4D, m1,       rs_matrix[i][0])
	    ^ gf_multiply(0x4D, m1 >> 8,  rs_matrix[i][1])
	    ^ gf_multiply(0x4D, m1 >> 16, rs_matrix[i][2])
	    ^ gf_multiply(0x4D, m1 >> 24, rs_matrix[i][3])
	    ^ gf_multiply(0x4D, m2,       rs_matrix[i][4])
	    ^ gf_multiply(0x4D, m2 >> 8,  rs_matrix[i][5])
	    ^ gf_multiply(0x4D, m2 >> 16, rs_matrix[i][6])
	    ^ gf_multiply(0x4D, m2 >> 24, rs_matrix[i][7])) << (i*8));
  return s;
Ruud de Rooij's avatar
Ruud de Rooij committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
}

/* ------------------------------------------------------------------------- */

/* This table describes which q S-boxes are used for each byte in each stage
 * of the function h, cf. figure 2 of the twofish paper.
 */

static byte * q_table[4][5] = { { q1, q1, q0, q0, q1 },
                                { q0, q1, q1, q0, q0 },
                                { q0, q0, q0, q1, q1 },
                                { q1, q0, q1, q1, q0 } };

/* The matrix MDS as specified in section 4.3.2 of the twofish paper. */

static byte mds_matrix[4][4] = { { 0x01, 0xEF, 0x5B, 0x5B },
245
246
247
				 { 0x5B, 0xEF, 0xEF, 0x01 },
				 { 0xEF, 0x5B, 0x01, 0xEF },
				 { 0xEF, 0x01, 0xEF, 0x5B } };
Ruud de Rooij's avatar
Ruud de Rooij committed
248
249
250
251
252
253
254
255
256
257
258

/* word h_byte(int k, int i, byte x, byte l0, byte l1, byte l2, byte l3);
 *
 * Perform the h function (section 4.3.2) on one byte.  It consists of
 * repeated applications of the q permutation, followed by a XOR with
 * part of a sub-key.  Finally, the value is multiplied by one column of
 * the MDS matrix.  To obtain the result for a full word, the results of
 * h for the individual bytes are XORed.
 *
 * k is the key size (/ 64 bits), i is the byte number (0 = LSB), x is the
 * actual byte to apply the function to; l0, l1, l2, and l3 are the
259
 * appropriate bytes from the subkey.  Note that only l0..l(k-1) are used.
Ruud de Rooij's avatar
Ruud de Rooij committed
260
261
262
263
264
 */

static word
h_byte(int k, int i, byte x, byte l0, byte l1, byte l2, byte l3)
{
265
266
267
268
269
270
271
272
273
  byte y = q_table[i][4][l0 ^
            q_table[i][3][l1 ^
              q_table[i][2][k == 2 ? x : l2 ^
                q_table[i][1][k == 3 ? x : l3 ^ q_table[i][0][x]]]]];

  return ( ((word)gf_multiply(0x69, mds_matrix[0][i], y))
	   | ((word)gf_multiply(0x69, mds_matrix[1][i], y) << 8)
	   | ((word)gf_multiply(0x69, mds_matrix[2][i], y) << 16)
	   | ((word)gf_multiply(0x69, mds_matrix[3][i], y) << 24) );
Ruud de Rooij's avatar
Ruud de Rooij committed
274
275
276
277
278
279
280
281
282
283
}

/* word h(int k, byte x, word l0, word l1, word l2, word l3);
 *
 * Perform the function h on a word.  See the description of h_byte() above.
 */

static word
h(int k, byte x, word l0, word l1, word l2, word l3)
{
284
285
286
287
  return (  h_byte(k, 0, x, l0,       l1,       l2,       l3)
	  ^ h_byte(k, 1, x, l0 >> 8,  l1 >> 8,  l2 >> 8,  l3 >> 8)
	  ^ h_byte(k, 2, x, l0 >> 16, l1 >> 16, l2 >> 16, l3 >> 16)
	  ^ h_byte(k, 3, x, l0 >> 24, l1 >> 24, l2 >> 24, l3 >> 24) );
Ruud de Rooij's avatar
Ruud de Rooij committed
288
289
290
291
}


/*
292
 * Sanity check using the test vectors from appendix A.1 of the Twofish paper.
Ruud de Rooij's avatar
Ruud de Rooij committed
293
 */
294
295
296
int
twofish_selftest(void)
{
Ruud de Rooij's avatar
Ruud de Rooij committed
297
  byte testkey128[16] =
298
299
  { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
Ruud de Rooij's avatar
Ruud de Rooij committed
300
  byte ciphertext128[16] =
301
  {
302
303
    0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32,
    0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A };
Ruud de Rooij's avatar
Ruud de Rooij committed
304
  byte testkey192[24] =
305
306
307
  { 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF,
    0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10,
    0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 };
Ruud de Rooij's avatar
Ruud de Rooij committed
308
  byte ciphertext192[16] =
309
310
  { 0xCF, 0xD1, 0xD2, 0xE5, 0xA9, 0xBE, 0x9C, 0xDF,
    0x50, 0x1F, 0x13, 0xB8, 0x92, 0xBD, 0x22, 0x48 };
Ruud de Rooij's avatar
Ruud de Rooij committed
311
312

  byte testkey256[32] =
313
314
315
316
  { 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF,
    0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10,
    0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
    0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF };
Ruud de Rooij's avatar
Ruud de Rooij committed
317
  byte ciphertext256[16] =
318
319
  { 0x37, 0x52, 0x7B, 0xE0, 0x05, 0x23, 0x34, 0xB8,
    0x9F, 0x0C, 0xFC, 0xCA, 0xE8, 0x7C, 0xFA, 0x20 };
Ruud de Rooij's avatar
Ruud de Rooij committed
320

321
  TWOFISH_context context;
Ruud de Rooij's avatar
Ruud de Rooij committed
322
323
  byte plaintext[16], ciphertext[16];

324
325
  twofish_setup(&context, 16, testkey128);
  memset(plaintext, 0, 16);
Ruud de Rooij's avatar
Ruud de Rooij committed
326

327
328
  twofish_encrypt(&context, plaintext, ciphertext);
  if (memcmp(ciphertext, ciphertext128, 16)) {
Ruud de Rooij's avatar
Ruud de Rooij committed
329
330
331
    return 0;
  }

332
333
  twofish_setup(&context, 24, testkey192);
  memset(plaintext, 0, 16);
Ruud de Rooij's avatar
Ruud de Rooij committed
334

335
336
  twofish_encrypt(&context, plaintext, ciphertext);
  if (memcmp(ciphertext, ciphertext192, 16)) {
Ruud de Rooij's avatar
Ruud de Rooij committed
337
338
339
    return 0;
  }

340
341
  twofish_setup(&context, 32, testkey256);
  memset(plaintext, 0, 16);
Ruud de Rooij's avatar
Ruud de Rooij committed
342

343
344
  twofish_encrypt(&context, plaintext, ciphertext);
  if (memcmp(ciphertext, ciphertext256, 16)) {
Ruud de Rooij's avatar
Ruud de Rooij committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    return 0;
  }

  return 1;
}

/* ------------------------------------------------------------------------- */

/* API */

/* Structure which contains the tables containing the subkeys and the
 * key-dependent s-boxes.
 */


360
/* void twofish_setup(TWOFISH_context *ctx, size_t keysize, const UINT8 * key);
Ruud de Rooij's avatar
Ruud de Rooij committed
361
362
363
364
 *
 * Set up internal tables required for twofish encryption and decryption.
 *
 * The key size is specified in bytes.  Key sizes up to 32 bytes are
365
 * supported.  Larger key sizes are silently truncated.  
Ruud de Rooij's avatar
Ruud de Rooij committed
366
367
 */

368
369
void
twofish_setup(TWOFISH_context * context, size_t keysize, const UINT8 *key)
Ruud de Rooij's avatar
Ruud de Rooij committed
370
{
371
372
373
  byte key_copy[32];
  word m[8], s[4], t;
  int i, j, k;
Ruud de Rooij's avatar
Ruud de Rooij committed
374
375

#ifndef NDEBUG
376
  static int initialized = 0;
Ruud de Rooij's avatar
Ruud de Rooij committed
377

378
379
380
381
  if (!initialized)
    {
      initialized = 1;
      assert(twofish_selftest());
Ruud de Rooij's avatar
Ruud de Rooij committed
382
383
384
    }
#endif

385
386
387
388
389
390
391
  /* Extend or truncate key as necessary */

  memset(key_copy, 0, 32);
  if (keysize > 32)
    keysize = 32;
  memcpy(key_copy, key, keysize);

392
  bytes_to_words(m, key_copy, (keysize + 3)/4);
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

  if (keysize <= 16)
    k = 2;
  else if (keysize <= 24)
    k = 3;
  else
    k = 4;

  /* Compute sub-keys */

  for (i = 0; i < 20; i++)
    {
      t = h(k, 2*i+1, m[1], m[3], m[5], m[7]);
      t = rol8(t);
      t += (context->keys[2*i] =
	    t + h(k, 2*i, m[0], m[2], m[4], m[6]));
      t = rol9(t);
      context->keys[2*i+1] = t;
Ruud de Rooij's avatar
Ruud de Rooij committed
411
412
    }

413
  /* Compute key-dependent S-boxes */
Ruud de Rooij's avatar
Ruud de Rooij committed
414

415
416
  for (i = 0; i < k; i++)
    s[k-1-i] = compute_s(m[2*i], m[2*i+1]);
Ruud de Rooij's avatar
Ruud de Rooij committed
417

418
419
420
421
422
423
424
  for (i = 0; i < 4; i++)
    for (j = 0; j < 256; j++)
      context->s_box[i][j] = h_byte(k, i, j,
				    s[0] >> (i*8),
				    s[1] >> (i*8),
				    s[2] >> (i*8),
				    s[3] >> (i*8));
Ruud de Rooij's avatar
Ruud de Rooij committed
425
426
}

427
428
429
/* void twofish_encrypt(TWOFISH_context *context,
 *                      const UINT8 *plaintext,
 *                      UINT8 *ciphertext);
Ruud de Rooij's avatar
Ruud de Rooij committed
430
431
432
433
434
 *
 * Encrypt 16 bytes of data with the twofish algorithm.
 *
 * Before this function can be used, twofish_setup() must be used in order to
 * set up various tables required for the encryption algorithm.
435
 * 
Ruud de Rooij's avatar
Ruud de Rooij committed
436
437
438
439
440
441
 * This function always encrypts 16 bytes of plaintext to 16 bytes of
 * ciphertext.  The memory areas of the plaintext and the ciphertext can
 * overlap.
 */

void
442
443
444
twofish_encrypt(TWOFISH_context *context,
		const UINT8 *plaintext,
		UINT8 *ciphertext)
Ruud de Rooij's avatar
Ruud de Rooij committed
445
{
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
  word words[4];
  word r0, r1, r2, r3, t0, t1;
  int i;
  word * keys        = context->keys;
  word (*s_box)[256] = context->s_box;

  bytes_to_words(words, plaintext, 4);

  r0 = words[0] ^ keys[0];
  r1 = words[1] ^ keys[1];
  r2 = words[2] ^ keys[2];
  r3 = words[3] ^ keys[3];

  for (i = 0; i < 8; i++) {
    t1 = (  s_box[1][r1 & 0xFF]
	  ^ s_box[2][(r1 >> 8) & 0xFF]
	  ^ s_box[3][(r1 >> 16) & 0xFF]
	  ^ s_box[0][(r1 >> 24) & 0xFF]);
    t0 = (  s_box[0][r0 & 0xFF]
	  ^ s_box[1][(r0 >> 8) & 0xFF]
	  ^ s_box[2][(r0 >> 16) & 0xFF]
	  ^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
    r3 = (t1 + t0 + keys[4*i+9]) ^ rol1(r3);
    r2 = (t0 + keys[4*i+8]) ^ r2;
    r2 = ror1(r2);

    t1 = (  s_box[1][r3 & 0xFF]
	  ^ s_box[2][(r3 >> 8) & 0xFF]
	  ^ s_box[3][(r3 >> 16) & 0xFF]
	  ^ s_box[0][(r3 >> 24) & 0xFF]);
    t0 = (  s_box[0][r2 & 0xFF]
	  ^ s_box[1][(r2 >> 8) & 0xFF]
	  ^ s_box[2][(r2 >> 16) & 0xFF]
	  ^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
    r1 = (t1 + t0 + keys[4*i+11]) ^ rol1(r1);
    r0 = (t0 + keys[4*i+10]) ^ r0;
    r0 = ror1(r0);
  }
Ruud de Rooij's avatar
Ruud de Rooij committed
484

485
486
487
488
  words[0] = r2 ^ keys[4];
  words[1] = r3 ^ keys[5];
  words[2] = r0 ^ keys[6];
  words[3] = r1 ^ keys[7];
Ruud de Rooij's avatar
Ruud de Rooij committed
489

490
  words_to_bytes(ciphertext, words, 4);
Ruud de Rooij's avatar
Ruud de Rooij committed
491
492
}

493
494
495
/* void twofish_decrypt(TWOFISH_context *context,
 *                      const UINT8 *ciphertext,
 *                      UINT8 *plaintext);
Ruud de Rooij's avatar
Ruud de Rooij committed
496
497
498
499
500
 *
 * Decrypt 16 bytes of data with the twofish algorithm.
 *
 * Before this function can be used, twofish_setup() must be used in order to
 * set up various tables required for the decryption algorithm.
501
 * 
Ruud de Rooij's avatar
Ruud de Rooij committed
502
503
504
505
506
507
 * This function always decrypts 16 bytes of ciphertext to 16 bytes of
 * plaintext.  The memory areas of the plaintext and the ciphertext can
 * overlap.
 */

void
508
509
510
twofish_decrypt(TWOFISH_context *context,
		const UINT8 *ciphertext,
		UINT8 *plaintext)
Ruud de Rooij's avatar
Ruud de Rooij committed
511
{
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
  word words[4];
  word r0, r1, r2, r3, t0, t1;
  int i;
  word *keys  = context->keys;
  word (*s_box)[256] = context->s_box;

  bytes_to_words(words, ciphertext, 4);

  r0 = words[2] ^ keys[6];
  r1 = words[3] ^ keys[7];
  r2 = words[0] ^ keys[4];
  r3 = words[1] ^ keys[5];

  for (i = 0; i < 8; i++) {
    t1 = (  s_box[1][r3 & 0xFF]
	  ^ s_box[2][(r3 >> 8) & 0xFF]
	  ^ s_box[3][(r3 >> 16) & 0xFF]
	  ^ s_box[0][(r3 >> 24) & 0xFF]);
    t0 = (  s_box[0][r2 & 0xFF]
	  ^ s_box[1][(r2 >> 8) & 0xFF]
	  ^ s_box[2][(r2 >> 16) & 0xFF]
	  ^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
    r1 = (t1 + t0 + keys[39-4*i]) ^ r1;
    r1 = ror1(r1);
    r0 = (t0 + keys[38-4*i]) ^ rol1(r0);

    t1 = (  s_box[1][r1 & 0xFF]
	  ^ s_box[2][(r1 >> 8) & 0xFF]
	  ^ s_box[3][(r1 >> 16) & 0xFF]
	  ^ s_box[0][(r1 >> 24) & 0xFF]);
    t0 = (  s_box[0][r0 & 0xFF]
	  ^ s_box[1][(r0 >> 8) & 0xFF]
	  ^ s_box[2][(r0 >> 16) & 0xFF]
	  ^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
    r3 = (t1 + t0 + keys[37-4*i]) ^ r3;
    r3 = ror1(r3);
    r2 = (t0 + keys[36-4*i]) ^ rol1(r2);
  }
Ruud de Rooij's avatar
Ruud de Rooij committed
550

551
552
553
554
  words[0] = r0 ^ keys[0];
  words[1] = r1 ^ keys[1];
  words[2] = r2 ^ keys[2];
  words[3] = r3 ^ keys[3];
Ruud de Rooij's avatar
Ruud de Rooij committed
555

556
  words_to_bytes(plaintext, words, 4);
Ruud de Rooij's avatar
Ruud de Rooij committed
557
}