twofish.c 18.1 KB
Newer Older
1 2
/* twofish.c
 *
3
 * The twofish block cipher.
4
 */
5

6
/* twofish - An implementation of the twofish cipher.
Ruud de Rooij's avatar
Ruud de Rooij committed
7 8 9 10 11
 * Copyright (C) 1999 Ruud de Rooij <ruud@debian.org>
 *
 * Modifications for lsh, integrated testing
 * Copyright (C) 1999 J.H.M. Dassen (Ray) <jdassen@wi.LeidenUniv.nl>
 *
12 13
 * Integrated with the nettle library,
 * Copyright (C) 2001 Niels Mller
Ruud de Rooij's avatar
Ruud de Rooij committed
14 15
 */

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* nettle, low-level cryptographics library
 *
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
 * The GNU MP Library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA.
Ruud de Rooij's avatar
Ruud de Rooij committed
32 33
 */

34
#include "twofish.h"
Ruud de Rooij's avatar
Ruud de Rooij committed
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

/* Bitwise rotations on 32-bit words.  These are defined as macros that
 * evaluate their argument twice, so do not apply to any expressions with
 * side effects.
 */

#define rol1(x) (((x) << 1) | (((x) & 0x80000000) >> 31))
#define rol8(x) (((x) << 8) | (((x) & 0xFF000000) >> 24))
#define rol9(x) (((x) << 9) | (((x) & 0xFF800000) >> 23))
#define ror1(x) (((x) >> 1) | (((x) & 0x00000001) << 31))

/* void bytes_to_words(word * dest, const byte * src, int n);
 * void words_to_bytes(byte * dest, const byte * src, int n);
 *
 * Copy n*4 bytes to n words and vice versa.
 */

#if defined(__i386__)

/* In the i386 case, these are simply memcpy's since the memory layout
 * of an array of bytes and an array of words is identical.
 */

#define bytes_to_words(dest,src,n) memcpy(dest,src,(n)*4)
#define words_to_bytes(dest,src,n) memcpy(dest,src,(n)*4)

#else

/* These versions are independent of endianness and word size. */

static void
bytes_to_words(word *dest, const byte *src, int n)
{
68 69 70 71
  while (n-- > 0)
    {
      *dest++ = src[0] | src[1] << 8 | src[2] << 16 | src[3] << 24;
      src += 4;
Ruud de Rooij's avatar
Ruud de Rooij committed
72 73 74 75 76 77
    }
}

static void
words_to_bytes(byte *dest, const word *src, int n)
{
78 79 80 81 82 83 84
  while (n-- > 0)
    {
      *dest++ = *src;
      *dest++ = *src >> 8;
      *dest++ = *src >> 16;
      *dest++ = *src >> 24;
      src++;
Ruud de Rooij's avatar
Ruud de Rooij committed
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    }
}

#endif

/* ------------------------------------------------------------------------- */

/* The permutations q0 and q1.  These are fixed permutations on 8-bit values.
 * The permutations have been computed using the program generate_q
 * which is distributed along with this file.
 */

static byte q0[] = { 0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76,
                     0x9A, 0x92, 0x80, 0x78, 0xE4, 0xDD, 0xD1, 0x38,
                     0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C,
                     0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48,
                     0xF2, 0xD0, 0x8B, 0x30, 0x84, 0x54, 0xDF, 0x23,
                     0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
                     0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C,
                     0xA6, 0xEB, 0xA5, 0xBE, 0x16, 0x0C, 0xE3, 0x61,
                     0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B,
                     0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1,
                     0xE1, 0xE6, 0xBD, 0x45, 0xE2, 0xF4, 0xB6, 0x66,
                     0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
                     0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA,
                     0xEA, 0x77, 0x39, 0xAF, 0x33, 0xC9, 0x62, 0x71,
                     0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8,
                     0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7,
                     0xA1, 0x1D, 0xAA, 0xED, 0x06, 0x70, 0xB2, 0xD2,
                     0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
                     0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB,
                     0x9E, 0x9C, 0x52, 0x1B, 0x5F, 0x93, 0x0A, 0xEF,
                     0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B,
                     0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64,
                     0x2A, 0xCE, 0xCB, 0x2F, 0xFC, 0x97, 0x05, 0x7A,
                     0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
                     0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02,
                     0xB8, 0xDA, 0xB0, 0x17, 0x55, 0x1F, 0x8A, 0x7D,
                     0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72,
                     0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34,
                     0x6E, 0x50, 0xDE, 0x68, 0x65, 0xBC, 0xDB, 0xF8,
                     0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
                     0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00,
                     0x6F, 0x9D, 0x36, 0x42, 0x4A, 0x5E, 0xC1, 0xE0, };

static byte q1[] = { 0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8,
                     0x4A, 0xD3, 0xE6, 0x6B, 0x45, 0x7D, 0xE8, 0x4B,
                     0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1,
                     0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F,
                     0x5E, 0xBA, 0xAE, 0x5B, 0x8A, 0x00, 0xBC, 0x9D,
                     0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
                     0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3,
                     0xB2, 0x73, 0x4C, 0x54, 0x92, 0x74, 0x36, 0x51,
                     0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96,
                     0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C,
                     0x13, 0x95, 0x9C, 0xC7, 0x24, 0x46, 0x3B, 0x70,
                     0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
                     0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC,
                     0x03, 0x6F, 0x08, 0xBF, 0x40, 0xE7, 0x2B, 0xE2,
                     0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9,
                     0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17,
                     0x66, 0x94, 0xA1, 0x1D, 0x3D, 0xF0, 0xDE, 0xB3,
                     0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
                     0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49,
                     0x81, 0x88, 0xEE, 0x21, 0xC4, 0x1A, 0xEB, 0xD9,
                     0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01,
                     0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48,
                     0x4F, 0xF2, 0x65, 0x8E, 0x78, 0x5C, 0x58, 0x19,
                     0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
                     0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5,
                     0xCE, 0xE9, 0x68, 0x44, 0xE0, 0x4D, 0x43, 0x69,
                     0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E,
                     0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC,
                     0x22, 0xC9, 0xC0, 0x9B, 0x89, 0xD4, 0xED, 0xAB,
                     0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
                     0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2,
                     0x16, 0x25, 0x86, 0x56, 0x55, 0x09, 0xBE, 0x91, };

/* ------------------------------------------------------------------------- */

/* byte gf_multiply(byte p, byte a, byte b)
 *
 * Multiplication in GF(2^8).
 *
 * This function multiplies a times b in the Galois Field GF(2^8) with
 * primitive polynomial p.
 * The representation of the polynomials a, b, and p uses bits with
 * values 2^i to represent the terms x^i.  The polynomial p contains an
 * implicit term x^8.
 *
 * Note that addition and subtraction in GF(2^8) is simply the XOR
 * operation.
 */

static byte
gf_multiply(byte p, byte a, byte b)
{
182 183 184 185 186 187 188 189
  word shift  = b;
  byte result = 0;
  while (a)
    {
      if (a & 1) result ^= shift;
      a = a >> 1;
      shift = shift << 1;
      if (shift & 0x100) shift ^= p;
Ruud de Rooij's avatar
Ruud de Rooij committed
190
    }
191
  return result;
Ruud de Rooij's avatar
Ruud de Rooij committed
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
}

/* ------------------------------------------------------------------------- */

/* The matrix RS as specified in section 4.3 the twofish paper. */

static byte rs_matrix[4][8] = {
    { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E },
    { 0xA4, 0x56, 0x82, 0xF3, 0x1E, 0xC6, 0x68, 0xE5 },
    { 0x02, 0xA1, 0xFC, 0xC1, 0x47, 0xAE, 0x3D, 0x19 },
    { 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E, 0x03 } };

/* word compute_s(word m1, word m2);
 *
 * Computes the value RS * M, where M is a byte vector composed of the
 * bytes of m1 and m2.  Arithmetic is done in GF(2^8) with primitive
 * polynomial x^8 + x^6 + x^3 + x^2 + 1.
 *
 * This function is used to compute the sub-keys S which are in turn used
 * to generate the S-boxes.
 */

static word
compute_s(word m1, word m2)
{
217 218 219 220 221 222 223 224 225 226 227 228
  word s = 0;
  int i;
  for (i = 0; i < 4; i++)
    s |=  ((  gf_multiply(0x4D, m1,       rs_matrix[i][0])
	    ^ gf_multiply(0x4D, m1 >> 8,  rs_matrix[i][1])
	    ^ gf_multiply(0x4D, m1 >> 16, rs_matrix[i][2])
	    ^ gf_multiply(0x4D, m1 >> 24, rs_matrix[i][3])
	    ^ gf_multiply(0x4D, m2,       rs_matrix[i][4])
	    ^ gf_multiply(0x4D, m2 >> 8,  rs_matrix[i][5])
	    ^ gf_multiply(0x4D, m2 >> 16, rs_matrix[i][6])
	    ^ gf_multiply(0x4D, m2 >> 24, rs_matrix[i][7])) << (i*8));
  return s;
Ruud de Rooij's avatar
Ruud de Rooij committed
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
}

/* ------------------------------------------------------------------------- */

/* This table describes which q S-boxes are used for each byte in each stage
 * of the function h, cf. figure 2 of the twofish paper.
 */

static byte * q_table[4][5] = { { q1, q1, q0, q0, q1 },
                                { q0, q1, q1, q0, q0 },
                                { q0, q0, q0, q1, q1 },
                                { q1, q0, q1, q1, q0 } };

/* The matrix MDS as specified in section 4.3.2 of the twofish paper. */

static byte mds_matrix[4][4] = { { 0x01, 0xEF, 0x5B, 0x5B },
245 246 247
				 { 0x5B, 0xEF, 0xEF, 0x01 },
				 { 0xEF, 0x5B, 0x01, 0xEF },
				 { 0xEF, 0x01, 0xEF, 0x5B } };
Ruud de Rooij's avatar
Ruud de Rooij committed
248 249 250 251 252 253 254 255 256 257 258

/* word h_byte(int k, int i, byte x, byte l0, byte l1, byte l2, byte l3);
 *
 * Perform the h function (section 4.3.2) on one byte.  It consists of
 * repeated applications of the q permutation, followed by a XOR with
 * part of a sub-key.  Finally, the value is multiplied by one column of
 * the MDS matrix.  To obtain the result for a full word, the results of
 * h for the individual bytes are XORed.
 *
 * k is the key size (/ 64 bits), i is the byte number (0 = LSB), x is the
 * actual byte to apply the function to; l0, l1, l2, and l3 are the
259
 * appropriate bytes from the subkey.  Note that only l0..l(k-1) are used.
Ruud de Rooij's avatar
Ruud de Rooij committed
260 261 262 263 264
 */

static word
h_byte(int k, int i, byte x, byte l0, byte l1, byte l2, byte l3)
{
265 266 267 268 269 270 271 272 273
  byte y = q_table[i][4][l0 ^
            q_table[i][3][l1 ^
              q_table[i][2][k == 2 ? x : l2 ^
                q_table[i][1][k == 3 ? x : l3 ^ q_table[i][0][x]]]]];

  return ( ((word)gf_multiply(0x69, mds_matrix[0][i], y))
	   | ((word)gf_multiply(0x69, mds_matrix[1][i], y) << 8)
	   | ((word)gf_multiply(0x69, mds_matrix[2][i], y) << 16)
	   | ((word)gf_multiply(0x69, mds_matrix[3][i], y) << 24) );
Ruud de Rooij's avatar
Ruud de Rooij committed
274 275 276 277 278 279 280 281 282 283
}

/* word h(int k, byte x, word l0, word l1, word l2, word l3);
 *
 * Perform the function h on a word.  See the description of h_byte() above.
 */

static word
h(int k, byte x, word l0, word l1, word l2, word l3)
{
284 285 286 287
  return (  h_byte(k, 0, x, l0,       l1,       l2,       l3)
	  ^ h_byte(k, 1, x, l0 >> 8,  l1 >> 8,  l2 >> 8,  l3 >> 8)
	  ^ h_byte(k, 2, x, l0 >> 16, l1 >> 16, l2 >> 16, l3 >> 16)
	  ^ h_byte(k, 3, x, l0 >> 24, l1 >> 24, l2 >> 24, l3 >> 24) );
Ruud de Rooij's avatar
Ruud de Rooij committed
288 289 290 291
}


/*
292
 * Sanity check using the test vectors from appendix A.1 of the Twofish paper.
Ruud de Rooij's avatar
Ruud de Rooij committed
293
 */
294 295 296
int
twofish_selftest(void)
{
Ruud de Rooij's avatar
Ruud de Rooij committed
297
  byte testkey128[16] =
298 299
  { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
Ruud de Rooij's avatar
Ruud de Rooij committed
300
  byte ciphertext128[16] =
301
  {
302 303
    0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32,
    0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A };
Ruud de Rooij's avatar
Ruud de Rooij committed
304
  byte testkey192[24] =
305 306 307
  { 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF,
    0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10,
    0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 };
Ruud de Rooij's avatar
Ruud de Rooij committed
308
  byte ciphertext192[16] =
309 310
  { 0xCF, 0xD1, 0xD2, 0xE5, 0xA9, 0xBE, 0x9C, 0xDF,
    0x50, 0x1F, 0x13, 0xB8, 0x92, 0xBD, 0x22, 0x48 };
Ruud de Rooij's avatar
Ruud de Rooij committed
311 312

  byte testkey256[32] =
313 314 315 316
  { 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF,
    0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10,
    0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
    0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF };
Ruud de Rooij's avatar
Ruud de Rooij committed
317
  byte ciphertext256[16] =
318 319
  { 0x37, 0x52, 0x7B, 0xE0, 0x05, 0x23, 0x34, 0xB8,
    0x9F, 0x0C, 0xFC, 0xCA, 0xE8, 0x7C, 0xFA, 0x20 };
Ruud de Rooij's avatar
Ruud de Rooij committed
320

321
  TWOFISH_context context;
Ruud de Rooij's avatar
Ruud de Rooij committed
322 323
  byte plaintext[16], ciphertext[16];

324 325
  twofish_setup(&context, 16, testkey128);
  memset(plaintext, 0, 16);
Ruud de Rooij's avatar
Ruud de Rooij committed
326

327 328
  twofish_encrypt(&context, plaintext, ciphertext);
  if (memcmp(ciphertext, ciphertext128, 16)) {
Ruud de Rooij's avatar
Ruud de Rooij committed
329 330 331
    return 0;
  }

332 333
  twofish_setup(&context, 24, testkey192);
  memset(plaintext, 0, 16);
Ruud de Rooij's avatar
Ruud de Rooij committed
334

335 336
  twofish_encrypt(&context, plaintext, ciphertext);
  if (memcmp(ciphertext, ciphertext192, 16)) {
Ruud de Rooij's avatar
Ruud de Rooij committed
337 338 339
    return 0;
  }

340 341
  twofish_setup(&context, 32, testkey256);
  memset(plaintext, 0, 16);
Ruud de Rooij's avatar
Ruud de Rooij committed
342

343 344
  twofish_encrypt(&context, plaintext, ciphertext);
  if (memcmp(ciphertext, ciphertext256, 16)) {
Ruud de Rooij's avatar
Ruud de Rooij committed
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
    return 0;
  }

  return 1;
}

/* ------------------------------------------------------------------------- */

/* API */

/* Structure which contains the tables containing the subkeys and the
 * key-dependent s-boxes.
 */


360
/* void twofish_setup(TWOFISH_context *ctx, size_t keysize, const UINT8 * key);
Ruud de Rooij's avatar
Ruud de Rooij committed
361 362 363 364
 *
 * Set up internal tables required for twofish encryption and decryption.
 *
 * The key size is specified in bytes.  Key sizes up to 32 bytes are
365
 * supported.  Larger key sizes are silently truncated.  
Ruud de Rooij's avatar
Ruud de Rooij committed
366 367
 */

368 369
void
twofish_setup(TWOFISH_context * context, size_t keysize, const UINT8 *key)
Ruud de Rooij's avatar
Ruud de Rooij committed
370
{
371 372 373
  byte key_copy[32];
  word m[8], s[4], t;
  int i, j, k;
Ruud de Rooij's avatar
Ruud de Rooij committed
374 375

#ifndef NDEBUG
376
  static int initialized = 0;
Ruud de Rooij's avatar
Ruud de Rooij committed
377

378 379 380 381
  if (!initialized)
    {
      initialized = 1;
      assert(twofish_selftest());
Ruud de Rooij's avatar
Ruud de Rooij committed
382 383 384
    }
#endif

385 386 387 388 389 390 391
  /* Extend or truncate key as necessary */

  memset(key_copy, 0, 32);
  if (keysize > 32)
    keysize = 32;
  memcpy(key_copy, key, keysize);

392
  bytes_to_words(m, key_copy, (keysize + 3)/4);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

  if (keysize <= 16)
    k = 2;
  else if (keysize <= 24)
    k = 3;
  else
    k = 4;

  /* Compute sub-keys */

  for (i = 0; i < 20; i++)
    {
      t = h(k, 2*i+1, m[1], m[3], m[5], m[7]);
      t = rol8(t);
      t += (context->keys[2*i] =
	    t + h(k, 2*i, m[0], m[2], m[4], m[6]));
      t = rol9(t);
      context->keys[2*i+1] = t;
Ruud de Rooij's avatar
Ruud de Rooij committed
411 412
    }

413
  /* Compute key-dependent S-boxes */
Ruud de Rooij's avatar
Ruud de Rooij committed
414

415 416
  for (i = 0; i < k; i++)
    s[k-1-i] = compute_s(m[2*i], m[2*i+1]);
Ruud de Rooij's avatar
Ruud de Rooij committed
417

418 419 420 421 422 423 424
  for (i = 0; i < 4; i++)
    for (j = 0; j < 256; j++)
      context->s_box[i][j] = h_byte(k, i, j,
				    s[0] >> (i*8),
				    s[1] >> (i*8),
				    s[2] >> (i*8),
				    s[3] >> (i*8));
Ruud de Rooij's avatar
Ruud de Rooij committed
425 426
}

427 428 429
/* void twofish_encrypt(TWOFISH_context *context,
 *                      const UINT8 *plaintext,
 *                      UINT8 *ciphertext);
Ruud de Rooij's avatar
Ruud de Rooij committed
430 431 432 433 434
 *
 * Encrypt 16 bytes of data with the twofish algorithm.
 *
 * Before this function can be used, twofish_setup() must be used in order to
 * set up various tables required for the encryption algorithm.
435
 * 
Ruud de Rooij's avatar
Ruud de Rooij committed
436 437 438 439 440 441
 * This function always encrypts 16 bytes of plaintext to 16 bytes of
 * ciphertext.  The memory areas of the plaintext and the ciphertext can
 * overlap.
 */

void
442 443 444
twofish_encrypt(TWOFISH_context *context,
		const UINT8 *plaintext,
		UINT8 *ciphertext)
Ruud de Rooij's avatar
Ruud de Rooij committed
445
{
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
  word words[4];
  word r0, r1, r2, r3, t0, t1;
  int i;
  word * keys        = context->keys;
  word (*s_box)[256] = context->s_box;

  bytes_to_words(words, plaintext, 4);

  r0 = words[0] ^ keys[0];
  r1 = words[1] ^ keys[1];
  r2 = words[2] ^ keys[2];
  r3 = words[3] ^ keys[3];

  for (i = 0; i < 8; i++) {
    t1 = (  s_box[1][r1 & 0xFF]
	  ^ s_box[2][(r1 >> 8) & 0xFF]
	  ^ s_box[3][(r1 >> 16) & 0xFF]
	  ^ s_box[0][(r1 >> 24) & 0xFF]);
    t0 = (  s_box[0][r0 & 0xFF]
	  ^ s_box[1][(r0 >> 8) & 0xFF]
	  ^ s_box[2][(r0 >> 16) & 0xFF]
	  ^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
    r3 = (t1 + t0 + keys[4*i+9]) ^ rol1(r3);
    r2 = (t0 + keys[4*i+8]) ^ r2;
    r2 = ror1(r2);

    t1 = (  s_box[1][r3 & 0xFF]
	  ^ s_box[2][(r3 >> 8) & 0xFF]
	  ^ s_box[3][(r3 >> 16) & 0xFF]
	  ^ s_box[0][(r3 >> 24) & 0xFF]);
    t0 = (  s_box[0][r2 & 0xFF]
	  ^ s_box[1][(r2 >> 8) & 0xFF]
	  ^ s_box[2][(r2 >> 16) & 0xFF]
	  ^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
    r1 = (t1 + t0 + keys[4*i+11]) ^ rol1(r1);
    r0 = (t0 + keys[4*i+10]) ^ r0;
    r0 = ror1(r0);
  }
Ruud de Rooij's avatar
Ruud de Rooij committed
484

485 486 487 488
  words[0] = r2 ^ keys[4];
  words[1] = r3 ^ keys[5];
  words[2] = r0 ^ keys[6];
  words[3] = r1 ^ keys[7];
Ruud de Rooij's avatar
Ruud de Rooij committed
489

490
  words_to_bytes(ciphertext, words, 4);
Ruud de Rooij's avatar
Ruud de Rooij committed
491 492
}

493 494 495
/* void twofish_decrypt(TWOFISH_context *context,
 *                      const UINT8 *ciphertext,
 *                      UINT8 *plaintext);
Ruud de Rooij's avatar
Ruud de Rooij committed
496 497 498 499 500
 *
 * Decrypt 16 bytes of data with the twofish algorithm.
 *
 * Before this function can be used, twofish_setup() must be used in order to
 * set up various tables required for the decryption algorithm.
501
 * 
Ruud de Rooij's avatar
Ruud de Rooij committed
502 503 504 505 506 507
 * This function always decrypts 16 bytes of ciphertext to 16 bytes of
 * plaintext.  The memory areas of the plaintext and the ciphertext can
 * overlap.
 */

void
508 509 510
twofish_decrypt(TWOFISH_context *context,
		const UINT8 *ciphertext,
		UINT8 *plaintext)
Ruud de Rooij's avatar
Ruud de Rooij committed
511
{
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
  word words[4];
  word r0, r1, r2, r3, t0, t1;
  int i;
  word *keys  = context->keys;
  word (*s_box)[256] = context->s_box;

  bytes_to_words(words, ciphertext, 4);

  r0 = words[2] ^ keys[6];
  r1 = words[3] ^ keys[7];
  r2 = words[0] ^ keys[4];
  r3 = words[1] ^ keys[5];

  for (i = 0; i < 8; i++) {
    t1 = (  s_box[1][r3 & 0xFF]
	  ^ s_box[2][(r3 >> 8) & 0xFF]
	  ^ s_box[3][(r3 >> 16) & 0xFF]
	  ^ s_box[0][(r3 >> 24) & 0xFF]);
    t0 = (  s_box[0][r2 & 0xFF]
	  ^ s_box[1][(r2 >> 8) & 0xFF]
	  ^ s_box[2][(r2 >> 16) & 0xFF]
	  ^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
    r1 = (t1 + t0 + keys[39-4*i]) ^ r1;
    r1 = ror1(r1);
    r0 = (t0 + keys[38-4*i]) ^ rol1(r0);

    t1 = (  s_box[1][r1 & 0xFF]
	  ^ s_box[2][(r1 >> 8) & 0xFF]
	  ^ s_box[3][(r1 >> 16) & 0xFF]
	  ^ s_box[0][(r1 >> 24) & 0xFF]);
    t0 = (  s_box[0][r0 & 0xFF]
	  ^ s_box[1][(r0 >> 8) & 0xFF]
	  ^ s_box[2][(r0 >> 16) & 0xFF]
	  ^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
    r3 = (t1 + t0 + keys[37-4*i]) ^ r3;
    r3 = ror1(r3);
    r2 = (t0 + keys[36-4*i]) ^ rol1(r2);
  }
Ruud de Rooij's avatar
Ruud de Rooij committed
550

551 552 553 554
  words[0] = r0 ^ keys[0];
  words[1] = r1 ^ keys[1];
  words[2] = r2 ^ keys[2];
  words[3] = r3 ^ keys[3];
Ruud de Rooij's avatar
Ruud de Rooij committed
555

556
  words_to_bytes(plaintext, words, 4);
Ruud de Rooij's avatar
Ruud de Rooij committed
557
}