sha256-compress.c 6.26 KB
Newer Older
1
/* sha256-compress.c
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

   The compression function of the sha256 hash function.

   Copyright (C) 2001, 2010 Niels Möller

   This file is part of GNU Nettle.

   GNU Nettle is free software: you can redistribute it and/or
   modify it under the terms of either:

     * the GNU Lesser General Public License as published by the Free
       Software Foundation; either version 3 of the License, or (at your
       option) any later version.

   or

     * the GNU General Public License as published by the Free
       Software Foundation; either version 2 of the License, or (at your
       option) any later version.

   or both in parallel, as here.

   GNU Nettle is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received copies of the GNU General Public License and
   the GNU Lesser General Public License along with this program.  If
   not, see http://www.gnu.org/licenses/.
*/
33 34 35 36 37

#if HAVE_CONFIG_H
# include "config.h"
#endif

38 39 40 41 42 43 44 45 46 47 48 49 50
#ifndef SHA256_DEBUG
# define SHA256_DEBUG 0
#endif

#if SHA256_DEBUG
# include <stdio.h>
# define DEBUG(i) \
  fprintf(stderr, "%2d: %8x %8x %8x %8x %8x %8x %8x %8x\n", \
	  i, A, B, C, D ,E, F, G, H)
#else
# define DEBUG(i)
#endif

51 52 53 54
#include <assert.h>
#include <stdlib.h>
#include <string.h>

55
#include "sha2.h"
56
#include "sha2-internal.h"
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

#include "macros.h"

/* A block, treated as a sequence of 32-bit words. */
#define SHA256_DATA_LENGTH 16

/* The SHA256 functions. The Choice function is the same as the SHA1
   function f1, and the majority function is the same as the SHA1 f3
   function. They can be optimized to save one boolean operation each
   - thanks to Rich Schroeppel, rcs@cs.arizona.edu for discovering
   this */

/* #define Choice(x,y,z) ( ( (x) & (y) ) | ( ~(x) & (z) ) ) */
#define Choice(x,y,z)   ( (z) ^ ( (x) & ( (y) ^ (z) ) ) ) 
/* #define Majority(x,y,z) ( ((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)) ) */
#define Majority(x,y,z) ( ((x) & (y)) ^ ((z) & ((x) ^ (y))) )

Niels Möller's avatar
Niels Möller committed
74 75
#define S0(x) (ROTL32(30,(x)) ^ ROTL32(19,(x)) ^ ROTL32(10,(x))) 
#define S1(x) (ROTL32(26,(x)) ^ ROTL32(21,(x)) ^ ROTL32(7,(x)))
76

Niels Möller's avatar
Niels Möller committed
77 78
#define s0(x) (ROTL32(25,(x)) ^ ROTL32(14,(x)) ^ ((x) >> 3))
#define s1(x) (ROTL32(15,(x)) ^ ROTL32(13,(x)) ^ ((x) >> 10))
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

/* The initial expanding function.  The hash function is defined over an
   64-word expanded input array W, where the first 16 are copies of the input
   data, and the remaining 64 are defined by

        W[ t ] = s1(W[t-2]) + W[t-7] + s0(W[i-15]) + W[i-16]

   This implementation generates these values on the fly in a circular
   buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
   optimization.
*/

#define EXPAND(W,i) \
( W[(i) & 15 ] += (s1(W[((i)-2) & 15]) + W[((i)-7) & 15] + s0(W[((i)-15) & 15])) )

/* The prototype SHA sub-round.  The fundamental sub-round is:

        T1 = h + S1(e) + Choice(e,f,g) + K[t] + W[t]
	T2 = S0(a) + Majority(a,b,c)
	a' = T1+T2
	b' = a
	c' = b
	d' = c
	e' = d + T1
	f' = e
	g' = f
	h' = g

   but this is implemented by unrolling the loop 8 times and renaming
   the variables
   ( h, a, b, c, d, e, f, g ) = ( a, b, c, d, e, f, g, h ) each
   iteration. */

/* It's crucial that DATA is only used once, as that argument will
 * have side effects. */
114 115 116 117 118
#define ROUND(a,b,c,d,e,f,g,h,k,data) do {	\
    h += S1(e) + Choice(e,f,g) + k + data;	\
    d += h;					\
    h += S0(a) + Majority(a,b,c);		\
  } while (0)
119

120 121 122 123 124 125 126
/* For fat builds */
#if HAVE_NATIVE_sha256_compress
void
_nettle_sha256_compress_c(uint32_t *state, const uint8_t *input, const uint32_t *k);
#define _nettle_sha256_compress _nettle_sha256_compress_c
#endif

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
void
_nettle_sha256_compress(uint32_t *state, const uint8_t *input, const uint32_t *k)
{
  uint32_t data[SHA256_DATA_LENGTH];
  uint32_t A, B, C, D, E, F, G, H;     /* Local vars */
  unsigned i;
  uint32_t *d;

  for (i = 0; i < SHA256_DATA_LENGTH; i++, input+= 4)
    {
      data[i] = READ_UINT32(input);
    }

  /* Set up first buffer and local data buffer */
  A = state[0];
  B = state[1];
  C = state[2];
  D = state[3];
  E = state[4];
  F = state[5];
  G = state[6];
  H = state[7];
  
  /* Heavy mangling */
  /* First 16 subrounds that act on the original data */

153
  DEBUG(-1);
154 155
  for (i = 0, d = data; i<16; i+=8, k += 8, d+= 8)
    {
156 157
      ROUND(A, B, C, D, E, F, G, H, k[0], d[0]); DEBUG(i);
      ROUND(H, A, B, C, D, E, F, G, k[1], d[1]); DEBUG(i+1);
158 159 160 161
      ROUND(G, H, A, B, C, D, E, F, k[2], d[2]);
      ROUND(F, G, H, A, B, C, D, E, k[3], d[3]);
      ROUND(E, F, G, H, A, B, C, D, k[4], d[4]);
      ROUND(D, E, F, G, H, A, B, C, k[5], d[5]);
162 163
      ROUND(C, D, E, F, G, H, A, B, k[6], d[6]); DEBUG(i+6);
      ROUND(B, C, D, E, F, G, H, A, k[7], d[7]); DEBUG(i+7);
164 165 166 167
    }
  
  for (; i<64; i += 16, k+= 16)
    {
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
      ROUND(A, B, C, D, E, F, G, H, k[ 0], EXPAND(data,  0)); DEBUG(i);
      ROUND(H, A, B, C, D, E, F, G, k[ 1], EXPAND(data,  1)); DEBUG(i+1);
      ROUND(G, H, A, B, C, D, E, F, k[ 2], EXPAND(data,  2)); DEBUG(i+2);
      ROUND(F, G, H, A, B, C, D, E, k[ 3], EXPAND(data,  3)); DEBUG(i+3);
      ROUND(E, F, G, H, A, B, C, D, k[ 4], EXPAND(data,  4)); DEBUG(i+4);
      ROUND(D, E, F, G, H, A, B, C, k[ 5], EXPAND(data,  5)); DEBUG(i+5);
      ROUND(C, D, E, F, G, H, A, B, k[ 6], EXPAND(data,  6)); DEBUG(i+6);
      ROUND(B, C, D, E, F, G, H, A, k[ 7], EXPAND(data,  7)); DEBUG(i+7);
      ROUND(A, B, C, D, E, F, G, H, k[ 8], EXPAND(data,  8)); DEBUG(i+8);
      ROUND(H, A, B, C, D, E, F, G, k[ 9], EXPAND(data,  9)); DEBUG(i+9);
      ROUND(G, H, A, B, C, D, E, F, k[10], EXPAND(data, 10)); DEBUG(i+10);
      ROUND(F, G, H, A, B, C, D, E, k[11], EXPAND(data, 11)); DEBUG(i+11);
      ROUND(E, F, G, H, A, B, C, D, k[12], EXPAND(data, 12)); DEBUG(i+12);
      ROUND(D, E, F, G, H, A, B, C, k[13], EXPAND(data, 13)); DEBUG(i+13);
      ROUND(C, D, E, F, G, H, A, B, k[14], EXPAND(data, 14)); DEBUG(i+14);
      ROUND(B, C, D, E, F, G, H, A, k[15], EXPAND(data, 15)); DEBUG(i+15);
184 185 186 187 188 189 190 191 192 193 194
    }

  /* Update state */
  state[0] += A;
  state[1] += B;
  state[2] += C;
  state[3] += D;
  state[4] += E;
  state[5] += F;
  state[6] += G;
  state[7] += H;
195 196 197 198 199
#if SHA256_DEBUG
  fprintf(stderr, "99: %8x %8x %8x %8x %8x %8x %8x %8x\n",
	  state[0], state[1], state[2], state[3],
	  state[4], state[5], state[6], state[7]);
#endif
200
}