ecc-25519.c 7.44 KB
Newer Older
Niels Möller's avatar
Niels Möller committed
1
/* ecc-25519.c
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

   Arithmetic and tables for curve25519,

   Copyright (C) 2014 Niels Möller

   This file is part of GNU Nettle.

   GNU Nettle is free software: you can redistribute it and/or
   modify it under the terms of either:

     * the GNU Lesser General Public License as published by the Free
       Software Foundation; either version 3 of the License, or (at your
       option) any later version.

   or

     * the GNU General Public License as published by the Free
       Software Foundation; either version 2 of the License, or (at your
       option) any later version.

   or both in parallel, as here.

   GNU Nettle is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received copies of the GNU General Public License and
   the GNU Lesser General Public License along with this program.  If
   not, see http://www.gnu.org/licenses/.
*/

#if HAVE_CONFIG_H
# include "config.h"
#endif

Niels Möller's avatar
Niels Möller committed
38
39
#include <assert.h>

40
#include "ecc.h"
41
42
43
44
45
46
#include "ecc-internal.h"

#define USE_REDC 0

#include "ecc-25519.h"

47
48
49
50
51
52
53
#if HAVE_NATIVE_ecc_25519_modp

#define ecc_25519_modp nettle_ecc_25519_modp
void
ecc_25519_modp (const struct ecc_curve *ecc, mp_limb_t *rp);
#else

Niels Möller's avatar
Niels Möller committed
54
#define PHIGH_BITS (GMP_NUMB_BITS * ECC_LIMB_SIZE - 255)
55

Niels Möller's avatar
Niels Möller committed
56
#if PHIGH_BITS == 0
57
58
59
60
61
62
63
64
65
#error Unsupported limb size */
#endif

static void
ecc_25519_modp(const struct ecc_curve *ecc UNUSED, mp_limb_t *rp)
{
  mp_limb_t hi, cy;

  cy = mpn_addmul_1 (rp, rp + ECC_LIMB_SIZE, ECC_LIMB_SIZE,
Niels Möller's avatar
Niels Möller committed
66
		     (mp_limb_t) 19 << PHIGH_BITS);
67
  hi = rp[ECC_LIMB_SIZE-1];
Niels Möller's avatar
Niels Möller committed
68
69
  cy = (cy << PHIGH_BITS) + (hi >> (GMP_NUMB_BITS - PHIGH_BITS));
  rp[ECC_LIMB_SIZE-1] = (hi & (GMP_NUMB_MASK >> PHIGH_BITS))
70
71
    + sec_add_1 (rp, rp, ECC_LIMB_SIZE - 1, 19 * cy);
}
72
73
#endif /* HAVE_NATIVE_ecc_25519_modp */

Niels Möller's avatar
Niels Möller committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#define QHIGH_BITS (GMP_NUMB_BITS * ECC_LIMB_SIZE - 252)

#if QHIGH_BITS == 0
#error Unsupported limb size */
#endif

static void
ecc_25519_modq (const struct ecc_curve *ecc, mp_limb_t *rp)
{
  mp_size_t n;
  mp_limb_t cy;

  /* n is the offset where we add in the next term */
  for (n = ECC_LIMB_SIZE; n-- > 0;)
    {
      cy = mpn_submul_1 (rp + n,
Niels Möller's avatar
Niels Möller committed
90
			 ecc->q.B_shifted, ECC_LIMB_SIZE,
Niels Möller's avatar
Niels Möller committed
91
92
93
			 rp[n + ECC_LIMB_SIZE]);
      /* Top limb of mBmodq_shifted is zero, so we get cy == 0 or 1 */
      assert (cy < 2);
Niels Möller's avatar
Niels Möller committed
94
      cnd_add_n (cy, rp+n, ecc->q.m, ECC_LIMB_SIZE);
Niels Möller's avatar
Niels Möller committed
95
96
    }

Niels Möller's avatar
Niels Möller committed
97
  cy = mpn_submul_1 (rp, ecc->q.m, ECC_LIMB_SIZE,
Niels Möller's avatar
Niels Möller committed
98
99
		     rp[ECC_LIMB_SIZE-1] >> (GMP_NUMB_BITS - QHIGH_BITS));
  assert (cy < 2);
Niels Möller's avatar
Niels Möller committed
100
  cnd_add_n (cy, rp, ecc->q.m, ECC_LIMB_SIZE);
Niels Möller's avatar
Niels Möller committed
101
102
}

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/* Needs 2*ecc->size limbs at rp, and 2*ecc->size additional limbs of
   scratch space. No overlap allowed. */
static void
ecc_modp_powm_2kp1 (const struct ecc_curve *ecc,
		    mp_limb_t *rp, const mp_limb_t *xp,
		    unsigned k, mp_limb_t *tp)
{
  if (k & 1)
    {
      ecc_modp_sqr (ecc, tp, xp);
      k--;
    }
  else
    {
      ecc_modp_sqr (ecc, rp, xp);
      ecc_modp_sqr (ecc, tp, rp);
      k -= 2;
    }
  while (k > 0)
    {
      ecc_modp_sqr (ecc, rp, tp);
      ecc_modp_sqr (ecc, tp, rp);
      k -= 2;
    }
  ecc_modp_mul (ecc, rp, tp, xp);
#undef t1
#undef t2
}

/* Compute x such that x^2 = a (mod p). Returns one on success, zero
   on failure. using the e == 2 special case of the Shanks-Tonelli
   algorithm (see http://www.math.vt.edu/people/brown/doc/sqrts.pdf,
   or Henri Cohen, Computational Algebraic Number Theory, 1.5.1.

   NOTE: Not side-channel silent. FIXME: Compute square root in the
   extended field if a isn't a square (mod p)? FIXME: Accept scratch
   space from caller (could allow scratch == rp). */
#if ECC_SQRT_E != 2
#error Broken curve25519 parameters
#endif
int
ecc_25519_sqrt(mp_limb_t *rp, const mp_limb_t *ap)
{
  mp_size_t itch;
  mp_limb_t *scratch;
  int res;
  const struct ecc_curve *ecc = &nettle_curve25519;

  itch = 7*ECC_LIMB_SIZE;
  scratch = gmp_alloc_limbs (itch);

#define t0 scratch
#define a7 (scratch + 2*ECC_LIMB_SIZE)
#define t1 (scratch + 3*ECC_LIMB_SIZE)
#define t2 (scratch + 5*ECC_LIMB_SIZE)
#define scratch_out (scratch + 3*ECC_LIMB_SIZE) /* overlap t1, t2 */

#define xp (scratch + ECC_LIMB_SIZE)
#define bp (scratch + 2*ECC_LIMB_SIZE)

  /* a^{2^252 - 3} = a^{(p-5)/8}, using the addition chain
     2^252 - 3
     = 1 + (2^252-4)
     = 1 + 4 (2^250-1)
     = 1 + 4 (2^125+1)(2^125-1)
     = 1 + 4 (2^125+1)(1+2(2^124-1))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^62-1))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(2^31-1))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^28-1)))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^14+1)(2^14-1)))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^14+1)(2^7+1)(2^7-1)))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^14+1)(2^7+1)(1+2(2^6-1))))
     = 1 + 4 (2^125+1)(1+2(2^62+1)(2^31+1)(7+8(2^14+1)(2^7+1)(1+2(2^3+1)*7)))
  */ 
     
  ecc_modp_powm_2kp1 (ecc, t1, ap, 1, t2);  /* a^3 */
  ecc_modp_sqr (ecc, t0, t1);		    /* a^6 */
  ecc_modp_mul (ecc, a7, t0, ap);	    /* a^7 */
  ecc_modp_powm_2kp1 (ecc, t0, a7, 3, t1);  /* a^63 = a^{2^6-1} */
  ecc_modp_sqr (ecc, t1, t0);		    /* a^{2^7-2} */
  ecc_modp_mul (ecc, t0, t1, ap);	    /* a^{2^7-1} */
  ecc_modp_powm_2kp1 (ecc, t1, t0, 7, t2);  /* a^{2^14-1}*/
  ecc_modp_powm_2kp1 (ecc, t0, t1, 14, t2); /* a^{2^28-1} */
  ecc_modp_sqr (ecc, t1, t0);		    /* a^{2^29-2} */
  ecc_modp_sqr (ecc, t2, t1);		    /* a^{2^30-4} */
  ecc_modp_sqr (ecc, t1, t2);		    /* a^{2^31-8} */
  ecc_modp_mul (ecc, t0, t1, a7);	    /* a^{2^31-1} */
  ecc_modp_powm_2kp1 (ecc, t1, t0, 31, t2); /* a^{2^62-1} */  
  ecc_modp_powm_2kp1 (ecc, t0, t1, 62, t2); /* a^{2^124-1}*/
  ecc_modp_sqr (ecc, t1, t0);		    /* a^{2^125-2} */
  ecc_modp_mul (ecc, t0, t1, ap);	    /* a^{2^125-1} */
  ecc_modp_powm_2kp1 (ecc, t1, t0, 125, t2); /* a^{2^250-1} */
  ecc_modp_sqr (ecc, t0, t1);		    /* a^{2^251-2} */
  ecc_modp_sqr (ecc, t1, t0);		    /* a^{2^252-4} */
  ecc_modp_mul (ecc, t0, t1, ap);	    /* a^{2^252-3} */

  /* Compute candidate root x and fudgefactor b. */
  ecc_modp_mul (ecc, xp, t0, ap); /* a^{(p+3)/8 */
  ecc_modp_mul (ecc, bp, t0, xp); /* a^{(p-1)/4} */
  /* Check if b == 1 (mod p) */
Niels Möller's avatar
Niels Möller committed
203
204
  if (mpn_cmp (bp, ecc->p.m, ECC_LIMB_SIZE) >= 0)
    mpn_sub_n (bp, bp, ecc->p.m, ECC_LIMB_SIZE);
205
206
207
208
209
210
211
212
  if (mpn_cmp (bp, ecc->unit, ECC_LIMB_SIZE) == 0)
    {
      mpn_copyi (rp, xp, ECC_LIMB_SIZE);
      res = 1;
    }
  else
    {
      mpn_add_1 (bp, bp, ECC_LIMB_SIZE, 1);
Niels Möller's avatar
Niels Möller committed
213
      if (mpn_cmp (bp, ecc->p.m, ECC_LIMB_SIZE) == 0)
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
	{
	  ecc_modp_mul (&nettle_curve25519, bp, xp, ecc_sqrt_z);
	  mpn_copyi (rp, bp, ECC_LIMB_SIZE);
	  res = 1;
	}
      else
	res = 0;
    }
  gmp_free_limbs (scratch, itch);
  return res;
#undef t0
#undef t1
#undef t2
#undef a7
#undef xp
#undef bp
#undef scratch_out
}
232

233
234
const struct ecc_curve nettle_curve25519 =
{
Niels Möller's avatar
Niels Möller committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
  {
    255,
    ECC_LIMB_SIZE,
    ECC_BMODP_SIZE,
    0,
    ecc_p,
    ecc_Bmodp,
    ecc_Bmodp_shifted,
    NULL,
  },
  {
    253,
    ECC_LIMB_SIZE,
    ECC_BMODQ_SIZE,
    0,
    ecc_q,
    ecc_Bmodq,  
    ecc_mBmodq_shifted, /* Use q - 2^{252} instead. */
    NULL,
  },

256
257
258
  0, /* No redc */
  ECC_PIPPENGER_K,
  ECC_PIPPENGER_C,
259

260
  ECC_ADD_EHH_ITCH (ECC_LIMB_SIZE),
261
262
263
264
  ECC_MUL_A_EH_ITCH (ECC_LIMB_SIZE),
  ECC_MUL_G_EH_ITCH (ECC_LIMB_SIZE),
  ECC_EH_TO_A_ITCH (ECC_LIMB_SIZE),

265
266
267
  ecc_25519_modp,
  NULL,
  ecc_25519_modp,
Niels Möller's avatar
Niels Möller committed
268
269
  ecc_25519_modq,

270
  ecc_add_ehh,
271
272
273
274
  ecc_mul_a_eh,
  ecc_mul_g_eh,
  ecc_eh_to_a,

275
  ecc_d, /* Use the Edwards curve constant. */
276
  ecc_g,
277
  ecc_edwards,
278
279
280
281
282
  ecc_pp1h,
  ecc_unit,
  ecc_qp1h,
  ecc_table
};