camellia-set-encrypt-key.c 9.01 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/* camellia-set-encrypt-key.c
 *
 * Key setup for the camellia block cipher.
 */
/*
 * Copyright (C) 2006,2007
 * NTT (Nippon Telegraph and Telephone Corporation).
 *
 * Copyright (C) 2010 Niels Mller
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */

/*
 * Algorithm Specification 
 *  http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html
 */

/* Based on camellia.c ver 1.2.0, see
   http://info.isl.ntt.co.jp/crypt/eng/camellia/dl/camellia-LGPL-1.2.0.tar.gz.
 */
#if HAVE_CONFIG_H
# include "config.h"
#endif

#include <assert.h>

#include "camellia-internal.h"

#include "macros.h"

/* key constants */

#define SIGMA1 0xA09E667F3BCC908BULL
#define SIGMA2 0xB67AE8584CAA73B2ULL
#define SIGMA3 0xC6EF372FE94F82BEULL
#define SIGMA4 0x54FF53A5F1D36F1CULL
#define SIGMA5 0x10E527FADE682D1DULL
#define SIGMA6 0xB05688C2B3E6C1FDULL

#define CAMELLIA_SP1110(INDEX) (_nettle_camellia_table.sp1110[(int)(INDEX)])
#define CAMELLIA_SP0222(INDEX) (_nettle_camellia_table.sp0222[(int)(INDEX)])
#define CAMELLIA_SP3033(INDEX) (_nettle_camellia_table.sp3033[(int)(INDEX)])
#define CAMELLIA_SP4404(INDEX) (_nettle_camellia_table.sp4404[(int)(INDEX)])

#define CAMELLIA_F(x, k, y) do {		\
    uint32_t __yl, __yr;			\
    uint64_t __i = (x) ^ (k);			\
    __yl					\
      = CAMELLIA_SP1110( __i & 0xff)		\
      ^ CAMELLIA_SP0222((__i >> 24) & 0xff)	\
      ^ CAMELLIA_SP3033((__i >> 16) & 0xff)	\
      ^ CAMELLIA_SP4404((__i >> 8) & 0xff);	\
    __yr					\
      = CAMELLIA_SP1110( __i >> 56)		\
      ^ CAMELLIA_SP0222((__i >> 48) & 0xff)	\
      ^ CAMELLIA_SP3033((__i >> 40) & 0xff)	\
      ^ CAMELLIA_SP4404((__i >> 32) & 0xff);	\
    __yl ^= __yr;				\
    __yr = ROL32(24, __yr);			\
    __yr ^= __yl;				\
    (y) = ((uint64_t) __yl << 32) | __yr;	\
  } while (0)

#define CAMELLIA_F_HALF_INV(x) do {		\
    uint32_t __t, __w;				\
    __t = (x) >> 32;				\
    __w = __t ^(x);				\
    __w = ROL32(8, __w);			\
    (x) = ((uint64_t) __w << 32) | (__t ^ __w);	\
  } while (0)

void
camellia_set_encrypt_key(struct camellia_ctx *ctx,
			 unsigned length, const uint8_t *key)
{
89
  uint64_t k0, k1;
90 91

  uint64_t subkey[34];
92
  uint64_t w, kw2, kw4;
93 94 95 96
  
  uint32_t dw, tl, tr;
  unsigned i;

97 98
  k0 = READ_UINT64(key);
  k1 = READ_UINT64(key +  8);
99 100 101 102
  
  if (length == 16)
    {
      ctx->nkeys = 26;
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
      /**
       * generate KL dependent subkeys
       */
      subkey[0] = k0; subkey[1] = k1;
      ROL128(15, k0, k1);
      subkey[4] = k0; subkey[5] = k1;
      ROL128(30, k0, k1);
      subkey[10] = k0; subkey[11] = k1;
      ROL128(15, k0, k1);
      subkey[13] = k1;
      ROL128(17, k0, k1);
      subkey[16] = k0; subkey[17] = k1;
      ROL128(17, k0, k1);
      subkey[18] = k0; subkey[19] = k1;
      ROL128(17, k0, k1);
      subkey[22] = k0; subkey[23] = k1;

      /* generate KA. D1 is k0, d2 is k1. */
      /* FIXME: Make notation match the spec better. */
      /* For the 128-bit case, KR = 0, the construction of KA reduces to:

	 D1 = KL >> 64;
	 W = KL & MASK64;
	 D2 = F(D1, Sigma1);
	 W = D2 ^ W
	 D1 = F(W, Sigma2)
	 D2 = D2 ^ F(D1, Sigma3);
	 D1 = D1 ^ F(D2, Sigma4);
	 KA = (D1 << 64) | D2;
      */
      k0 = subkey[0]; w = subkey[1];
      CAMELLIA_F(k0, SIGMA1, k1);
      w ^= k1;
      CAMELLIA_F(w, SIGMA2, k0);
      CAMELLIA_F(k0, SIGMA3, w);
      k1 ^= w;
      CAMELLIA_F(k1, SIGMA4, w);
      k0 ^= w;

      /* generate KA dependent subkeys */
      subkey[2] = k0; subkey[3] = k1;
      ROL128(15, k0, k1);
      subkey[6] = k0; subkey[7] = k1;
      ROL128(15, k0, k1);
      subkey[8] = k0; subkey[9] = k1;
      ROL128(15, k0, k1);
      subkey[12] = k0;
      ROL128(15, k0, k1);
      subkey[14] = k0; subkey[15] = k1;
      ROL128(34, k0, k1);
      subkey[20] = k0; subkey[21] = k1;
      ROL128(17, k0, k1);
      subkey[24] = k0; subkey[25] = k1;
156 157 158
    }
  else
    {
159
      uint64_t k2, k3;
160
      ctx->nkeys = 34;
161
      k2 = READ_UINT64(key + 16);
162 163

      if (length == 24)
164
	k3 = ~k2;
165 166 167
      else
	{
	  assert (length == 32);
168
	  k3 = READ_UINT64(key + 24);
169
	}
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
      /* generate KL dependent subkeys */
      subkey[0] = k0; subkey[1] = k1;
      ROL128(45, k0, k1);
      subkey[12] = k0; subkey[13] = k1;
      ROL128(15, k0, k1);
      subkey[16] = k0; subkey[17] = k1;
      ROL128(17, k0, k1);
      subkey[22] = k0; subkey[23] = k1;
      ROL128(34, k0, k1);
      subkey[30] = k0; subkey[31] = k1;

      /* generate KR dependent subkeys */
      ROL128(15, k2, k3);
      subkey[4] = k2; subkey[5] = k3;
      ROL128(15, k2, k3);
      subkey[8] = k2; subkey[9] = k3;
      ROL128(30, k2, k3);
      subkey[18] = k2; subkey[19] = k3;
      ROL128(34, k2, k3);
      subkey[26] = k2; subkey[27] = k3;
      ROL128(34, k2, k3);

      /* generate KA */
      /* The construction of KA is done as

	 D1 = (KL ^ KR) >> 64
	 D2 = (KL ^ KR) & MASK64
	 W = F(D1, SIGMA1)
	 D2 = D2 ^ W
	 D1 = F(D2, SIGMA2) ^ (KR >> 64)
	 D2 = F(D1, SIGMA3) ^ W ^ (KR & MASK64)
	 D1 = D1 ^ F(W, SIGMA2)
	 D2 = D2 ^ F(D1, SIGMA3)
	 D1 = D1 ^ F(D2, SIGMA4)
      */

      k0 = subkey[0] ^ k2;
      k1 = subkey[1] ^ k3;

      CAMELLIA_F(k0, SIGMA1, w);
      k1 ^= w;

      CAMELLIA_F(k1, SIGMA2, k0);
      k0 ^= k2;

      CAMELLIA_F(k0, SIGMA3, k1);
      k1 ^= w ^ k3;

      CAMELLIA_F(k1, SIGMA4, w);
      k0 ^= w;

      /* generate KB */
      k2 ^= k0; k3 ^= k1;
      CAMELLIA_F(k2, SIGMA5, w);
      k3 ^= w;
      CAMELLIA_F(k3, SIGMA6, w);
      k2 ^= w;

      /* generate KA dependent subkeys */
      ROL128(15, k0, k1);
      subkey[6] = k0; subkey[7] = k1;
      ROL128(30, k0, k1);
      subkey[14] = k0; subkey[15] = k1;
      ROL128(32, k0, k1);
      subkey[24] = k0; subkey[25] = k1;
      ROL128(17, k0, k1);
      subkey[28] = k0; subkey[29] = k1;

      /* generate KB dependent subkeys */
      subkey[2] = k2; subkey[3] = k3;
      ROL128(30, k2, k3);
      subkey[10] = k2; subkey[11] = k3;
      ROL128(30, k2, k3);
      subkey[20] = k2; subkey[21] = k3;
      ROL128(51, k2, k3);
      subkey[32] = k2; subkey[33] = k3;
246 247
    }

248 249 250
  /* At this point, the subkey array contains the subkeys as described
     in the spec, 26 for short keys and 34 for large keys. */

251
  /* absorb kw2 to other subkeys */
252
  kw2 = subkey[1];
253

254 255 256 257 258 259 260 261 262 263 264 265 266 267
  subkey[3] ^= kw2;
  subkey[5] ^= kw2;
  subkey[7] ^= kw2;
  for (i = 8; i < ctx->nkeys - 2; i += 8)
    {
      /* FIXME: gcc for x86_32 is smart enough to fetch the 32 low bits
	 and xor the result into the 32 high bits, but it still generates
	 worse code than for explicit 32-bit operations. */
      kw2 ^= (kw2 & ~subkey[i+1]) << 32;
      dw = (kw2 & subkey[i+1]) >> 32; kw2 ^= ROL32(1, dw); 

      subkey[i+3] ^= kw2;
      subkey[i+5] ^= kw2;
      subkey[i+7] ^= kw2;
268
    }
269 270
  subkey[i] ^= kw2;
  
271 272
  /* absorb kw4 to other subkeys */  
  kw4 = subkey[ctx->nkeys - 1];
273 274

  for (i = ctx->nkeys - 10; i > 0; i -= 8)
275
    {
276 277 278 279 280
      subkey[i+6] ^= kw4;
      subkey[i+4] ^= kw4;
      subkey[i+2] ^= kw4;
      kw4 ^= (kw4 & ~subkey[i]) << 32;
      dw = (kw4 & subkey[i]) >> 32; kw4 ^= ROL32(1, dw);      
281 282 283 284 285 286 287 288
    }

  subkey[6] ^= kw4;
  subkey[4] ^= kw4;
  subkey[2] ^= kw4;
  subkey[0] ^= kw4;

  /* key XOR is end of F-function */
289
  ctx->keys[0] = subkey[0] ^ subkey[2];
290
  ctx->keys[2] = subkey[3];
291

292 293 294 295 296
  ctx->keys[3] = subkey[2] ^ subkey[4];
  ctx->keys[4] = subkey[3] ^ subkey[5];
  ctx->keys[5] = subkey[4] ^ subkey[6];
  ctx->keys[6] = subkey[5] ^ subkey[7];

297
  for (i = 8; i < ctx->nkeys - 2; i += 8)
298
    {
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
      tl = (subkey[i+2] >> 32) ^ (subkey[i+2] & ~subkey[i]);
      dw = tl & (subkey[i] >> 32);
      tr = subkey[i+2] ^ ROL32(1, dw);
      ctx->keys[i-1] = subkey[i-2] ^ ( ((uint64_t) tl << 32) | tr);

      ctx->keys[i] = subkey[i];
      ctx->keys[i+1] = subkey[i+1];

      tl = (subkey[i-1] >> 32) ^ (subkey[i-1] & ~subkey[i+1]);
      dw = tl & (subkey[i+1] >> 32);
      tr = subkey[i-1] ^ ROL32(1, dw);
      ctx->keys[i+2] = subkey[i+3] ^ ( ((uint64_t) tl << 32) | tr);

      ctx->keys[i+3] = subkey[i+2] ^ subkey[i+4];
      ctx->keys[i+4] = subkey[i+3] ^ subkey[i+5];
      ctx->keys[i+5] = subkey[i+4] ^ subkey[i+6];
      ctx->keys[i+6] = subkey[i+5] ^ subkey[i+7];
316
    }
317 318 319
  ctx->keys[i-1] = subkey[i-2];
  ctx->keys[i] = subkey[i] ^ subkey[i-1];

320 321 322 323 324 325 326 327 328 329 330
  for (i = 0; i < ctx->nkeys - 2; i += 8)
    {
      /* apply the inverse of the last half of F-function */
      CAMELLIA_F_HALF_INV(ctx->keys[i+2]);
      CAMELLIA_F_HALF_INV(ctx->keys[i+3]);
      CAMELLIA_F_HALF_INV(ctx->keys[i+4]);
      CAMELLIA_F_HALF_INV(ctx->keys[i+5]);
      CAMELLIA_F_HALF_INV(ctx->keys[i+6]);
      CAMELLIA_F_HALF_INV(ctx->keys[i+7]);
    }
}