bignum-random-prime.c 14.8 KB
Newer Older
1
/* bignum-random-prime.c
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

   Generation of random provable primes.

   Copyright (C) 2010, 2013 Niels Möller

   This file is part of GNU Nettle.

   GNU Nettle is free software: you can redistribute it and/or
   modify it under the terms of either:

     * the GNU Lesser General Public License as published by the Free
       Software Foundation; either version 3 of the License, or (at your
       option) any later version.

   or

     * the GNU General Public License as published by the Free
       Software Foundation; either version 2 of the License, or (at your
       option) any later version.

   or both in parallel, as here.

   GNU Nettle is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received copies of the GNU General Public License and
   the GNU Lesser General Public License along with this program.  If
   not, see http://www.gnu.org/licenses/.
*/
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

#if HAVE_CONFIG_H
# include "config.h"
#endif

#ifndef RANDOM_PRIME_VERBOSE
#define RANDOM_PRIME_VERBOSE 0
#endif

#include <assert.h>
#include <stdlib.h>

#if RANDOM_PRIME_VERBOSE
#include <stdio.h>
#define VERBOSE(x) (fputs((x), stderr))
#else
#define VERBOSE(x)
#endif

#include "bignum.h"
53
#include "hogweed-internal.h"
54 55
#include "macros.h"

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
/* Use a table of p_2 = 3 to p_{172} = 1021, used for sieving numbers
   of up to 20 bits. */

#define NPRIMES 171
#define TRIAL_DIV_BITS 20
#define TRIAL_DIV_MASK ((1 << TRIAL_DIV_BITS) - 1)

/* A 20-bit number x is divisible by p iff

     ((x * inverse) & TRIAL_DIV_MASK) <= limit
*/
struct trial_div_info {
  uint32_t inverse; /* p^{-1} (mod 2^20) */
  uint32_t limit;   /* floor( (2^20 - 1) / p) */
};

static const uint16_t
primes[NPRIMES] = {
  3,5,7,11,13,17,19,23,
  29,31,37,41,43,47,53,59,
  61,67,71,73,79,83,89,97,
  101,103,107,109,113,127,131,137,
  139,149,151,157,163,167,173,179,
  181,191,193,197,199,211,223,227,
  229,233,239,241,251,257,263,269,
  271,277,281,283,293,307,311,313,
  317,331,337,347,349,353,359,367,
  373,379,383,389,397,401,409,419,
  421,431,433,439,443,449,457,461,
  463,467,479,487,491,499,503,509,
  521,523,541,547,557,563,569,571,
  577,587,593,599,601,607,613,617,
  619,631,641,643,647,653,659,661,
  673,677,683,691,701,709,719,727,
  733,739,743,751,757,761,769,773,
  787,797,809,811,821,823,827,829,
  839,853,857,859,863,877,881,883,
  887,907,911,919,929,937,941,947,
  953,967,971,977,983,991,997,1009,
  1013,1019,1021,
};

static const uint32_t
prime_square[NPRIMES+1] = {
  9,25,49,121,169,289,361,529,
  841,961,1369,1681,1849,2209,2809,3481,
  3721,4489,5041,5329,6241,6889,7921,9409,
  10201,10609,11449,11881,12769,16129,17161,18769,
  19321,22201,22801,24649,26569,27889,29929,32041,
  32761,36481,37249,38809,39601,44521,49729,51529,
  52441,54289,57121,58081,63001,66049,69169,72361,
  73441,76729,78961,80089,85849,94249,96721,97969,
  100489,109561,113569,120409,121801,124609,128881,134689,
  139129,143641,146689,151321,157609,160801,167281,175561,
  177241,185761,187489,192721,196249,201601,208849,212521,
  214369,218089,229441,237169,241081,249001,253009,259081,
  271441,273529,292681,299209,310249,316969,323761,326041,
  332929,344569,351649,358801,361201,368449,375769,380689,
  383161,398161,410881,413449,418609,426409,434281,436921,
  452929,458329,466489,477481,491401,502681,516961,528529,
  537289,546121,552049,564001,573049,579121,591361,597529,
  619369,635209,654481,657721,674041,677329,683929,687241,
  703921,727609,734449,737881,744769,769129,776161,779689,
  786769,822649,829921,844561,863041,877969,885481,896809,
  908209,935089,942841,954529,966289,982081,994009,1018081,
  1026169,1038361,1042441,1L<<20
122 123
};

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
static const struct trial_div_info
trial_div_table[NPRIMES] = {
  {699051,349525},{838861,209715},{748983,149796},{953251,95325},
  {806597,80659},{61681,61680},{772635,55188},{866215,45590},
  {180789,36157},{1014751,33825},{793517,28339},{1023001,25575},
  {48771,24385},{870095,22310},{217629,19784},{710899,17772},
  {825109,17189},{281707,15650},{502135,14768},{258553,14364},
  {464559,13273},{934875,12633},{1001449,11781},{172961,10810},
  {176493,10381},{203607,10180},{568387,9799},{788837,9619},
  {770193,9279},{1032063,8256},{544299,8004},{619961,7653},
  {550691,7543},{182973,7037},{229159,6944},{427445,6678},
  {701195,6432},{370455,6278},{90917,6061},{175739,5857},
  {585117,5793},{225087,5489},{298817,5433},{228877,5322},
  {442615,5269},{546651,4969},{244511,4702},{83147,4619},
  {769261,4578},{841561,4500},{732687,4387},{978961,4350},
  {133683,4177},{65281,4080},{629943,3986},{374213,3898},
  {708079,3869},{280125,3785},{641833,3731},{618771,3705},
  {930477,3578},{778747,3415},{623751,3371},{40201,3350},
  {122389,3307},{950371,3167},{1042353,3111},{18131,3021},
  {285429,3004},{549537,2970},{166487,2920},{294287,2857},
  {919261,2811},{636339,2766},{900735,2737},{118605,2695},
  {10565,2641},{188273,2614},{115369,2563},{735755,2502},
  {458285,2490},{914767,2432},{370513,2421},{1027079,2388},
  {629619,2366},{462401,2335},{649337,2294},{316165,2274},
  {484655,2264},{65115,2245},{326175,2189},{1016279,2153},
  {990915,2135},{556859,2101},{462791,2084},{844629,2060},
  {404537,2012},{457123,2004},{577589,1938},{638347,1916},
  {892325,1882},{182523,1862},{1002505,1842},{624371,1836},
  {69057,1817},{210787,1786},{558769,1768},{395623,1750},
  {992745,1744},{317855,1727},{384877,1710},{372185,1699},
  {105027,1693},{423751,1661},{408961,1635},{908331,1630},
  {74551,1620},{36933,1605},{617371,1591},{506045,1586},
  {24929,1558},{529709,1548},{1042435,1535},{31867,1517},
  {166037,1495},{928781,1478},{508975,1458},{4327,1442},
  {779637,1430},{742091,1418},{258263,1411},{879631,1396},
  {72029,1385},{728905,1377},{589057,1363},{348621,1356},
  {671515,1332},{710453,1315},{84249,1296},{959363,1292},
  {685853,1277},{467591,1274},{646643,1267},{683029,1264},
  {439927,1249},{254461,1229},{660713,1223},{554195,1220},
  {202911,1215},{753253,1195},{941457,1190},{776635,1187},
  {509511,1182},{986147,1156},{768879,1151},{699431,1140},
  {696417,1128},{86169,1119},{808997,1114},{25467,1107},
  {201353,1100},{708087,1084},{1018339,1079},{341297,1073},
  {434151,1066},{96287,1058},{950765,1051},{298257,1039},
  {675933,1035},{167731,1029},{815445,1027},
169 170
};

171 172 173 174 175
/* Element j gives the index of the first prime of size 3+j bits */
static uint8_t
prime_by_size[9] = {
  1,3,5,10,17,30,53,96,171
};
176 177

/* Combined Miller-Rabin test to the base a, and checking the
178 179
   conditions from Pocklington's theorem, nm1dq holds (n-1)/q, with q
   prime. */
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static int
miller_rabin_pocklington(mpz_t n, mpz_t nm1, mpz_t nm1dq, mpz_t a)
{
  mpz_t r;
  mpz_t y;
  int is_prime = 0;

  /* Avoid the mp_bitcnt_t type for compatibility with older GMP
     versions. */
  unsigned k;
  unsigned j;

  VERBOSE(".");

  if (mpz_even_p(n) || mpz_cmp_ui(n, 3) < 0)
    return 0;

  mpz_init(r);
  mpz_init(y);

  k = mpz_scan1(nm1, 0);
  assert(k > 0);

  mpz_fdiv_q_2exp (r, nm1, k);

  mpz_powm(y, a, r, n);

  if (mpz_cmp_ui(y, 1) == 0 || mpz_cmp(y, nm1) == 0)
208 209
    goto passed_miller_rabin;
    
210 211 212 213 214 215
  for (j = 1; j < k; j++)
    {
      mpz_powm_ui (y, y, 2, n);

      if (mpz_cmp_ui (y, 1) == 0)
	break;
216

217
      if (mpz_cmp (y, nm1) == 0)
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	{
	passed_miller_rabin:
	  /* We know that a^{n-1} = 1 (mod n)

	     Remains to check that gcd(a^{(n-1)/q} - 1, n) == 1 */      
	  VERBOSE("x");

	  mpz_powm(y, a, nm1dq, n);
	  mpz_sub_ui(y, y, 1);
	  mpz_gcd(y, y, n);
	  is_prime = mpz_cmp_ui (y, 1) == 0;
	  VERBOSE(is_prime ? "\n" : "");
	  break;
	}

233 234 235 236 237 238 239 240
    }

  mpz_clear(r);
  mpz_clear(y);

  return is_prime;
}

241
/* The most basic variant of Pocklingtons theorem:
242

243
   Assume that q^e | (n-1), with q prime. If we can find an a such that
244 245

     a^{n-1} = 1 (mod n)
246
     gcd(a^{(n-1)/q} - 1, n) = 1
247

248
   then any prime divisor p of n satisfies p = 1 (mod q^e).
249

250 251 252
   Proof (Cohen, 8.3.2): Assume p is a prime factor of n. The central
   idea of the proof is to consider the order, modulo p, of a. Denote
   this by d.
253

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
   a^{n-1} = 1 (mod n) implies a^{n-1} = 1 (mod p), hence d | (n-1).
   Next, the condition gcd(a^{(n-1)/q} - 1, n) = 1 implies that
   a^{(n-1)/q} != 1, hence d does not divide (n-1)/q. Since q is
   prime, this means that q^e | d.

   Finally, we have a^{p-1} = 1 (mod p), hence d | (p-1). So q^e | d |
   (p-1), which gives the desired result: p = 1 (mod q^e).


   * Variant, slightly stronger than Fact 4.59, HAC:

   Assume n = 1 + 2rq, q an odd prime, r <= 2q, and 

     a^{n-1} = 1 (mod n)
     gcd(a^{(n-1)/q} - 1, n) = 1

   Then n is prime.

   Proof: By Pocklington's theorem, any prime factor p satisfies p = 1
   (mod q). Neither 1 or q+1 are primes, hence p >= 1 + 2q. If n is
   composite, we have n >= (1+2q)^2. But the assumption r <= 2q
   implies n <= 1 + 4q^2, a contradiction.

   In bits, the requirement is that #n <= 2 #q, then

     r = (n-1)/2q < 2^{#n - #q} <= 2^#q = 2 2^{#q-1}< 2 q


   * Another variant with an extra test (Variant of Fact 4.42, HAC):

   Assume n = 1 + 2rq, n odd, q an odd prime, 8 q^3 >= n

     a^{n-1} = 1 (mod n)
     gcd(a^{(n-1)/q} - 1, n) = 1

   Also let x = floor(r / 2q), y = r mod 2q, 

   If y^2 - 4x is not a square, then n is prime.

   Proof (adapted from Maurer, Journal of Cryptology, 8 (1995)):

   Assume n is composite. There are at most two factors, both odd,

     n = (1+2m_1 q)(1+2m_2 q) = 1 + 4 m_1 m_2 q^2 + 2 (m_1 + m_2) q
     
   where we can assume m_1 >= m_2. Then the bound n <= 8 q^3 implies m_1
   m_2 < 2q, restricting (m_1, m_2) to the domain 0 < m_2 <
   sqrt(2q), 0 < m_1 < 2q / m_2.

   We have the bound

     m_1 + m_2 < 2q / m_2 + m_2 <= 2q + 1 (maximum value for m_2 = 1)

   And the case m_1 = 2q, m_2 = 1 can be excluded, because it gives n
   > 8q^3. So in fact, m_1 + m_2 < 2q.

   Next, write r = (n-1)/2q = 2 m_1 m_2 q + m_1 + m_2.
   
   If follows that m_1 + m_2 = y and m_1 m_2 = x. m_1 and m_2 are
   thus the roots of the equation

     m^2 - y m + x = 0

   which has integer roots iff y^2 - 4 x is the square of an integer.

   In bits, the requirement is that #n <= 3 #q, then

     n < 2^#n <= 2^{3 #q} = 8 2^{3 (#q-1)} < 8 q^3
322 323 324
*/

/* Generate a prime number p of size bits with 2 p0q dividing (p-1).
325
   p0 must be of size >= ceil(bits/3). The extra factor q can be
Niels Möller's avatar
Niels Möller committed
326 327 328
   omitted (then p0 and p0q should be equal). If top_bits_set is one,
   the topmost two bits are set to one, suitable for RSA primes. Also
   returns r = (p-1)/p0q. */
329
void
330 331
_nettle_generate_pocklington_prime (mpz_t p, mpz_t r,
				    unsigned bits, int top_bits_set, 
332
				    void *ctx, nettle_random_func *random, 
333 334 335
				    const mpz_t p0,
				    const mpz_t q,
				    const mpz_t p0q)
336
{
337 338 339 340 341 342 343 344 345 346 347
  mpz_t r_min, r_range, pm1, a, e;
  int need_square_test;
  unsigned p0_bits;
  mpz_t x, y, p04;

  p0_bits = mpz_sizeinbase (p0, 2);

  assert (bits <= 3*p0_bits);
  assert (bits > p0_bits);

  need_square_test = (bits > 2 * p0_bits);
348

349 350
  mpz_init (r_min);
  mpz_init (r_range);
351 352 353
  mpz_init (pm1);
  mpz_init (a);

354 355 356 357 358 359 360 361 362 363 364
  if (need_square_test)
    {
      mpz_init (x);
      mpz_init (y);
      mpz_init (p04);
      mpz_mul_2exp (p04, p0, 2);
    }

  if (q)
    mpz_init (e);

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
  if (top_bits_set)
    {
      /* i = floor (2^{bits-3} / p0q), then 3I + 3 <= r <= 4I, with I
	 - 2 possible values. */
      mpz_set_ui (r_min, 1);
      mpz_mul_2exp (r_min, r_min, bits-3);
      mpz_fdiv_q (r_min, r_min, p0q);
      mpz_sub_ui (r_range, r_min, 2);
      mpz_mul_ui (r_min, r_min, 3);
      mpz_add_ui (r_min, r_min, 3);
    }
  else
    {
      /* i = floor (2^{bits-2} / p0q), I + 1 <= r <= 2I */
      mpz_set_ui (r_range, 1);
      mpz_mul_2exp (r_range, r_range, bits-2);
      mpz_fdiv_q (r_range, r_range, p0q);
      mpz_add_ui (r_min, r_range, 1);
    }
384

385
  for (;;)
386
    {
387
      uint8_t buf[1];
388

389 390
      nettle_mpz_random (r, ctx, random, r_range);
      mpz_add (r, r, r_min);
391

392 393 394 395
      /* Set p = 2*r*p0q + 1 */
      mpz_mul_2exp(r, r, 1);
      mpz_mul (pm1, r, p0q);
      mpz_add_ui (p, pm1, 1);
396

397 398 399 400 401 402 403 404 405 406 407 408 409
      assert(mpz_sizeinbase(p, 2) == bits);

      /* Should use GMP trial division interface when that
	 materializes, we don't need any testing beyond trial
	 division. */
      if (!mpz_probab_prime_p (p, 1))
	continue;

      random(ctx, sizeof(buf), buf);
	  
      mpz_set_ui (a, buf[0] + 2);

      if (q)
410 411
	{
	  mpz_mul (e, r, q);
412 413 414 415 416 417 418 419 420
	  if (!miller_rabin_pocklington(p, pm1, e, a))
	    continue;

	  if (need_square_test)
	    {
	      /* Our e corresponds to 2r in the theorem */
	      mpz_tdiv_qr (x, y, e, p04);
	      goto square_test;
	    }
421
	}
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
      else
	{
	  if (!miller_rabin_pocklington(p, pm1, r, a))
	    continue;
	  if (need_square_test)
	    {
	      mpz_tdiv_qr (x, y, r, p04);
	    square_test:
	      /* We have r' = 2r, x = floor (r/2q) = floor(r'/2q),
		 and y' = r' - x 4q = 2 (r - x 2q) = 2y.

		 Then y^2 - 4x is a square iff y'^2 - 16 x is a
		 square. */
		 
	      mpz_mul (y, y, y);
	      mpz_submul_ui (y, x, 16);
	      if (mpz_perfect_square_p (y))
		continue;
	    }
	}

      /* If we passed all the tests, we have found a prime. */
      break;
445
    }
446 447
  mpz_clear (r_min);
  mpz_clear (r_range);
448 449
  mpz_clear (pm1);
  mpz_clear (a);
450 451 452 453 454 455 456 457 458

  if (need_square_test)
    {
      mpz_clear (x);
      mpz_clear (y);
      mpz_clear (p04);
    }
  if (q)
    mpz_clear (e);
459
}
460

461 462
/* Generate random prime of a given size. Maurer's algorithm (Alg.
   6.42 Handbook of applied cryptography), but with ratio = 1/2 (like
463
   the variant in fips186-3). */
464
void
465
nettle_random_prime(mpz_t p, unsigned bits, int top_bits_set,
466 467
		    void *random_ctx, nettle_random_func *random,
		    void *progress_ctx, nettle_progress_func *progress)
468 469 470 471 472 473 474
{
  assert (bits >= 3);
  if (bits <= 10)
    {
      unsigned first;
      unsigned choices;
      uint8_t buf;
475

476 477 478
      assert (!top_bits_set);

      random (random_ctx, sizeof(buf), &buf);
479

480 481 482 483 484 485 486 487 488 489 490
      first = prime_by_size[bits-3];
      choices = prime_by_size[bits-2] - first;
      
      mpz_set_ui (p, primes[first + buf % choices]);
    }
  else if (bits <= 20)
    {
      unsigned long highbit;
      uint8_t buf[3];
      unsigned long x;
      unsigned j;
491
      
492 493
      assert (!top_bits_set);

494 495 496
      highbit = 1L << (bits - 1);

    again:
497
      random (random_ctx, sizeof(buf), buf);
498 499 500 501
      x = READ_UINT24(buf);
      x &= (highbit - 1);
      x |= highbit | 1;

502 503 504 505 506 507 508
      for (j = 0; prime_square[j] <= x; j++)
	{
	  unsigned q = x * trial_div_table[j].inverse & TRIAL_DIV_MASK;
	  if (q <= trial_div_table[j].limit)
	    goto again;
	}
      mpz_set_ui (p, x);
509 510 511
    }
  else
    {
512
      mpz_t q, r;
513 514

      mpz_init (q);
515
      mpz_init (r);
516

517 518 519
     /* Bit size ceil(k/2) + 1, slightly larger than used in Alg. 4.62
	in Handbook of Applied Cryptography (which seems to be
	incorrect for odd k). */
520 521
      nettle_random_prime (q, (bits+3)/2, 0, random_ctx, random,
			   progress_ctx, progress);
522

523 524
      _nettle_generate_pocklington_prime (p, r, bits, top_bits_set,
					  random_ctx, random,
525 526
					  q, NULL, q);
      
527 528 529
      if (progress)
	progress (progress_ctx, 'x');

530
      mpz_clear (q);
531
      mpz_clear (r);
532 533
    }
}