rsa-sign.c 4.43 KB
Newer Older
1
/* rsa-sign.c
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

   Creating RSA signatures.

   Copyright (C) 2001, 2003 Niels Möller

   This file is part of GNU Nettle.

   GNU Nettle is free software: you can redistribute it and/or
   modify it under the terms of either:

     * the GNU Lesser General Public License as published by the Free
       Software Foundation; either version 3 of the License, or (at your
       option) any later version.

   or

     * the GNU General Public License as published by the Free
       Software Foundation; either version 2 of the License, or (at your
       option) any later version.

   or both in parallel, as here.

   GNU Nettle is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received copies of the GNU General Public License and
   the GNU Lesser General Public License along with this program.  If
   not, see http://www.gnu.org/licenses/.
*/
33 34

#if HAVE_CONFIG_H
35
# include "config.h"
36 37
#endif

38
#include <assert.h>
39

40 41 42
#include "rsa.h"
#include "rsa-internal.h"
#include "gmp-glue.h"
43 44

void
45
rsa_private_key_init(struct rsa_private_key *key)
46 47 48 49 50 51 52 53 54 55 56 57 58 59
{
  mpz_init(key->d);
  mpz_init(key->p);
  mpz_init(key->q);
  mpz_init(key->a);
  mpz_init(key->b);
  mpz_init(key->c);

  /* Not really necessary, but it seems cleaner to initialize all the
   * storage. */
  key->size = 0;
}

void
60
rsa_private_key_clear(struct rsa_private_key *key)
61 62 63 64 65 66 67 68 69 70
{
  mpz_clear(key->d);
  mpz_clear(key->p);
  mpz_clear(key->q);
  mpz_clear(key->a);
  mpz_clear(key->b);
  mpz_clear(key->c);
}

int
71
rsa_private_key_prepare(struct rsa_private_key *key)
72 73
{
  mpz_t n;
Simo Sorce's avatar
Simo Sorce committed
74 75 76 77 78 79 80

  /* A key is invalid if the sizes of q and c are smaller than
   * the size of n, we rely on that property in calculations so
   * fail early if that happens. */
  if (mpz_size (key->q) + mpz_size (key->c) < mpz_size(key->p))
    return 0;

81 82 83 84 85 86 87 88 89 90
  /* The size of the product is the sum of the sizes of the factors,
   * or sometimes one less. It's possible but tricky to compute the
   * size without computing the full product. */

  mpz_init(n);
  mpz_mul(n, key->p, key->q);

  key->size = _rsa_check_size(n);

  mpz_clear(n);
Simo Sorce's avatar
Simo Sorce committed
91

92 93 94
  return (key->size > 0);
}

95 96
#if NETTLE_USE_MINI_GMP

97 98 99 100 101 102 103 104 105 106 107 108
/* Computing an rsa root. */
void
rsa_compute_root(const struct rsa_private_key *key,
		 mpz_t x, const mpz_t m)
{
  mpz_t xp; /* modulo p */
  mpz_t xq; /* modulo q */

  mpz_init(xp); mpz_init(xq);    

  /* Compute xq = m^d % q = (m%q)^b % q */
  mpz_fdiv_r(xq, m, key->q);
Niels Möller's avatar
Niels Möller committed
109
  mpz_powm_sec(xq, xq, key->b, key->q);
110 111 112

  /* Compute xp = m^d % p = (m%p)^a % p */
  mpz_fdiv_r(xp, m, key->p);
Niels Möller's avatar
Niels Möller committed
113
  mpz_powm_sec(xp, xp, key->a, key->p);
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

  /* Set xp' = (xp - xq) c % p. */
  mpz_sub(xp, xp, xq);
  mpz_mul(xp, xp, key->c);
  mpz_fdiv_r(xp, xp, key->p);

  /* Finally, compute x = xq + q xp'
   *
   * To prove that this works, note that
   *
   *   xp  = x + i p,
   *   xq  = x + j q,
   *   c q = 1 + k p
   *
   * for some integers i, j and k. Now, for some integer l,
   *
   *   xp' = (xp - xq) c + l p
   *       = (x + i p - (x + j q)) c + l p
   *       = (i p - j q) c + l p
   *       = (i c + l) p - j (c q)
   *       = (i c + l) p - j (1 + kp)
   *       = (i c + l - j k) p - j
   *
   * which shows that xp' = -j (mod p). We get
   *
   *   xq + q xp' = x + j q + (i c + l - j k) p q - j q
   *              = x + (i c + l - j k) p q
   *
   * so that
   *
   *   xq + q xp' = x (mod pq)
   *
   * We also get 0 <= xq + q xp' < p q, because
   *
   *   0 <= xq < q and 0 <= xp' < p.
   */
  mpz_mul(x, key->q, xp);
  mpz_add(x, x, xq);

  mpz_clear(xp); mpz_clear(xq);
}
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

#else /* !NETTLE_USE_MINI_GMP */

/* Computing an rsa root. */
void
rsa_compute_root(const struct rsa_private_key *key,
		 mpz_t x, const mpz_t m)
{
  TMP_GMP_DECL (scratch, mp_limb_t);
  TMP_GMP_DECL (ml, mp_limb_t);
  mp_limb_t *xl;
  size_t key_size;

  key_size = NETTLE_OCTET_SIZE_TO_LIMB_SIZE(key->size);
  assert(mpz_size (m) <= key_size);

  /* we need a copy because m can be shorter than key_size,
   * but _rsa_sec_compute_root expect all inputs to be
   * normalized to a key_size long buffer length */
  TMP_GMP_ALLOC (ml, key_size);
  mpz_limbs_copy(ml, m, key_size);

  TMP_GMP_ALLOC (scratch, _rsa_sec_compute_root_itch(key));

  xl = mpz_limbs_write (x, key_size);
  _rsa_sec_compute_root (key, xl, ml, scratch);
  mpz_limbs_finish (x, key_size);

  TMP_GMP_FREE (ml);
  TMP_GMP_FREE (scratch);
}
#endif /* !NETTLE_USE_MINI_GMP */