ecc-internal.h 12.7 KB
Newer Older
1 2
/* ecc-internal.h

3
   Copyright (C) 2013, 2014 Niels Möller
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

   This file is part of GNU Nettle.

   GNU Nettle is free software: you can redistribute it and/or
   modify it under the terms of either:

     * the GNU Lesser General Public License as published by the Free
       Software Foundation; either version 3 of the License, or (at your
       option) any later version.

   or

     * the GNU General Public License as published by the Free
       Software Foundation; either version 2 of the License, or (at your
       option) any later version.

   or both in parallel, as here.

   GNU Nettle is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received copies of the GNU General Public License and
   the GNU Lesser General Public License along with this program.  If
   not, see http://www.gnu.org/licenses/.
*/
Niels Möller's avatar
Niels Möller committed
31

32
/* Development of Nettle's ECC support was funded by the .SE Internet Fund. */
Niels Möller's avatar
Niels Möller committed
33 34 35 36

#ifndef NETTLE_ECC_INTERNAL_H_INCLUDED
#define NETTLE_ECC_INTERNAL_H_INCLUDED

37
#include "nettle-types.h"
38
#include "bignum.h"
Niels Möller's avatar
Niels Möller committed
39
#include "ecc-curve.h"
40
#include "gmp-glue.h"
Niels Möller's avatar
Niels Möller committed
41 42

/* Name mangling */
43 44
#define ecc_pp1_redc _nettle_ecc_pp1_redc
#define ecc_pm1_redc _nettle_ecc_pm1_redc
45 46 47 48 49 50 51
#define ecc_mod_add _nettle_ecc_mod_add
#define ecc_mod_sub _nettle_ecc_mod_sub
#define ecc_mod_mul_1 _nettle_ecc_mod_mul_1
#define ecc_mod_addmul_1 _nettle_ecc_mod_addmul_1
#define ecc_mod_submul_1 _nettle_ecc_mod_submul_1
#define ecc_mod_mul _nettle_ecc_mod_mul
#define ecc_mod_sqr _nettle_ecc_mod_sqr
52
#define ecc_mod_random _nettle_ecc_mod_random
53
#define ecc_mod _nettle_ecc_mod
54
#define ecc_mod_inv _nettle_ecc_mod_inv
55
#define ecc_hash _nettle_ecc_hash
56 57 58 59 60 61 62 63 64 65 66 67 68
#define ecc_a_to_j _nettle_ecc_a_to_j
#define ecc_j_to_a _nettle_ecc_j_to_a
#define ecc_eh_to_a _nettle_ecc_eh_to_a
#define ecc_dup_jj _nettle_ecc_dup_jj
#define ecc_add_jja _nettle_ecc_add_jja
#define ecc_add_jjj _nettle_ecc_add_jjj
#define ecc_dup_eh _nettle_ecc_dup_eh
#define ecc_add_eh _nettle_ecc_add_eh
#define ecc_add_ehh _nettle_ecc_add_ehh
#define ecc_mul_g _nettle_ecc_mul_g
#define ecc_mul_a _nettle_ecc_mul_a
#define ecc_mul_g_eh _nettle_ecc_mul_g_eh
#define ecc_mul_a_eh _nettle_ecc_mul_a_eh
Niels Möller's avatar
Niels Möller committed
69 70 71 72 73
#define cnd_copy _nettle_cnd_copy
#define sec_add_1 _nettle_sec_add_1
#define sec_sub_1 _nettle_sec_sub_1
#define sec_tabselect _nettle_sec_tabselect
#define sec_modinv _nettle_sec_modinv
74
#define curve25519_eh_to_x _nettle_curve25519_eh_to_x
Niels Möller's avatar
Niels Möller committed
75

76 77 78 79 80 81
/* Keep this structure internal for now. It's misnamed (since it's
   really implementing the equivalent twisted Edwards curve, with
   different coordinates). And we're not quite ready to provide
   general ecc operations over an arbitrary type of curve. */
extern const struct ecc_curve _nettle_curve25519;

82 83
#define ECC_MAX_SIZE ((521 + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS)

Niels Möller's avatar
Niels Möller committed
84 85
/* Window size for ecc_mul_a. Using 4 bits seems like a good choice,
   for both Intel x86_64 and ARM Cortex A9. For the larger curves, of
86
   384 and 521 bits, we could improve speed by a few percent if we go
Niels Möller's avatar
Niels Möller committed
87 88 89
   up to 5 bits, but I don't think that's worth doubling the
   storage. */
#define ECC_MUL_A_WBITS 4
90 91
/* And for ecc_mul_a_eh */
#define ECC_MUL_A_EH_WBITS 4
92

93
struct ecc_modulo;
Niels Möller's avatar
Niels Möller committed
94 95 96

/* Reduces from 2*ecc->size to ecc->size. */
/* Required to return a result < 2q. This property is inherited by
97
   mod_mul and mod_sqr. */
98
typedef void ecc_mod_func (const struct ecc_modulo *m, mp_limb_t *rp);
Niels Möller's avatar
Niels Möller committed
99

100
typedef void ecc_mod_inv_func (const struct ecc_modulo *m,
101
			       mp_limb_t *vp, const mp_limb_t *ap,
102 103
			       mp_limb_t *scratch);

104 105 106 107 108 109
/* Computes the square root of (u/v) (mod p) */
typedef int ecc_mod_sqrt_func (const struct ecc_modulo *m,
			       mp_limb_t *rp,
			       const mp_limb_t *up, const mp_limb_t *vp,
			       mp_limb_t *scratch);

110 111 112 113 114
typedef void ecc_add_func (const struct ecc_curve *ecc,
			   mp_limb_t *r,
			   const mp_limb_t *p, const mp_limb_t *q,
			   mp_limb_t *scratch);

115 116 117 118 119 120 121 122 123 124 125 126 127
typedef void ecc_mul_g_func (const struct ecc_curve *ecc, mp_limb_t *r,
			     const mp_limb_t *np, mp_limb_t *scratch);

typedef void ecc_mul_func (const struct ecc_curve *ecc,
			   mp_limb_t *r,
			   const mp_limb_t *np, const mp_limb_t *p,
			   mp_limb_t *scratch);

typedef void ecc_h_to_a_func (const struct ecc_curve *ecc,
			      int flags,
			      mp_limb_t *r, const mp_limb_t *p,
			      mp_limb_t *scratch);

128 129 130 131 132 133
struct ecc_modulo
{
  unsigned short bit_size;
  unsigned short size;
  unsigned short B_size;
  unsigned short redc_size;
134
  unsigned short invert_itch;
135
  unsigned short sqrt_itch;
136 137 138 139 140 141 142 143 144

  const mp_limb_t *m;
  /* B^size mod m. Expected to have at least 32 leading zeros
     (equality for secp_256r1). */
  const mp_limb_t *B;
  /* 2^{bit_size} - p, same value as above, but shifted. */
  const mp_limb_t *B_shifted;
  /* m +/- 1, for redc, excluding redc_size low limbs. */
  const mp_limb_t *redc_mpm1;
145 146
  /* (m+1)/2 */
  const mp_limb_t *mp1h;
147 148 149

  ecc_mod_func *mod;
  ecc_mod_func *reduce;
150
  ecc_mod_inv_func *invert;
151
  ecc_mod_sqrt_func *sqrt;
152 153
};

Niels Möller's avatar
Niels Möller committed
154 155 156 157 158 159
/* Represents an elliptic curve of the form

     y^2 = x^3 - 3x + b (mod p)
*/
struct ecc_curve
{
Niels Möller's avatar
Niels Möller committed
160 161 162 163 164 165 166
  /* The prime p. */
  struct ecc_modulo p;
  /* Group order. FIXME: Currently, many fucntions rely on q.size ==
     p.size. This has to change for radix-51 implementation of
     curve25519 mod p arithmetic. */
  struct ecc_modulo q;

Niels Möller's avatar
Niels Möller committed
167 168 169 170
  unsigned short use_redc;
  unsigned short pippenger_k;
  unsigned short pippenger_c;

171
  unsigned short add_hhh_itch;
172 173 174 175
  unsigned short mul_itch;
  unsigned short mul_g_itch;
  unsigned short h_to_a_itch;

176
  ecc_add_func *add_hhh;
177 178 179 180
  ecc_mul_func *mul;
  ecc_mul_g_func *mul_g;
  ecc_h_to_a_func *h_to_a;

Niels Möller's avatar
Niels Möller committed
181
  /* Curve constant */
Niels Möller's avatar
Niels Möller committed
182
  const mp_limb_t *b;
183
  /* Generator, x coordinate followed by y (affine coordinates).
Niels Möller's avatar
Niels Möller committed
184
     Currently used only by the test suite. */
Niels Möller's avatar
Niels Möller committed
185
  const mp_limb_t *g;
186 187 188
  /* If non-NULL, the constant needed for transformation to the
     equivalent Edwards curve. */
  const mp_limb_t *edwards_root;
Niels Möller's avatar
Niels Möller committed
189

190
  /* For redc, same as B mod p, otherwise 1. */
Niels Möller's avatar
Niels Möller committed
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
  const mp_limb_t *unit;

  /* Tables for multiplying by the generator, size determined by k and
     c. The first 2^c entries are defined by

       T[  j_0 +   j_1 2 +     ... + j_{c-1} 2^{c-1} ]
         = j_0 g + j_1 2^k g + ... + j_{c-1} 2^{k(c-1)} g

     The following entries differ by powers of 2^{kc},

       T[i] = 2^{kc} T[i-2^c]
  */  
  const mp_limb_t *pippenger_table;
};

/* In-place reduction. */
207
ecc_mod_func ecc_mod;
208 209
ecc_mod_func ecc_pp1_redc;
ecc_mod_func ecc_pm1_redc;
Niels Möller's avatar
Niels Möller committed
210

211 212
ecc_mod_inv_func ecc_mod_inv;

Niels Möller's avatar
Niels Möller committed
213
void
214 215
ecc_mod_add (const struct ecc_modulo *m, mp_limb_t *rp,
	     const mp_limb_t *ap, const mp_limb_t *bp);
Niels Möller's avatar
Niels Möller committed
216
void
217 218
ecc_mod_sub (const struct ecc_modulo *m, mp_limb_t *rp,
	     const mp_limb_t *ap, const mp_limb_t *bp);
Niels Möller's avatar
Niels Möller committed
219 220

void
221 222
ecc_mod_mul_1 (const struct ecc_modulo *m, mp_limb_t *rp,
	       const mp_limb_t *ap, const mp_limb_t b);
Niels Möller's avatar
Niels Möller committed
223 224

void
225 226
ecc_mod_addmul_1 (const struct ecc_modulo *m, mp_limb_t *rp,
		  const mp_limb_t *ap, mp_limb_t b);
Niels Möller's avatar
Niels Möller committed
227
void
228 229
ecc_mod_submul_1 (const struct ecc_modulo *m, mp_limb_t *rp,
		  const mp_limb_t *ap, mp_limb_t b);
Niels Möller's avatar
Niels Möller committed
230 231 232

/* NOTE: mul and sqr needs 2*ecc->size limbs at rp */
void
233 234
ecc_mod_mul (const struct ecc_modulo *m, mp_limb_t *rp,
	     const mp_limb_t *ap, const mp_limb_t *bp);
Niels Möller's avatar
Niels Möller committed
235 236

void
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
ecc_mod_sqr (const struct ecc_modulo *m, mp_limb_t *rp,
	     const mp_limb_t *ap);

#define ecc_modp_add(ecc, r, a, b) \
  ecc_mod_add (&(ecc)->p, (r), (a), (b))
#define ecc_modp_sub(ecc, r, a, b) \
  ecc_mod_sub (&(ecc)->p, (r), (a), (b))
#define ecc_modp_mul_1(ecc, r, a, b) \
  ecc_mod_mul_1 (&(ecc)->p, (r), (a), (b))
#define ecc_modp_addmul_1(ecc, r, a, b) \
  ecc_mod_addmul_1 (&(ecc)->p, (r), (a), (b))
#define ecc_modp_submul_1(ecc, r, a, b) \
  ecc_mod_submul_1 (&(ecc)->p, (r), (a), (b))
#define ecc_modp_mul(ecc, r, a, b) \
  ecc_mod_mul (&(ecc)->p, (r), (a), (b))
#define ecc_modp_sqr(ecc, r, a) \
  ecc_mod_sqr (&(ecc)->p, (r), (a))

#define ecc_modq_add(ecc, r, a, b) \
  ecc_mod_add (&(ecc)->q, (r), (a), (b))
#define ecc_modq_mul(ecc, r, a, b) \
  ecc_mod_mul (&(ecc)->q, (r), (a), (b))
Niels Möller's avatar
Niels Möller committed
259 260

/* mod q operations. */
261
void
262 263
ecc_mod_random (const struct ecc_modulo *m, mp_limb_t *xp,
		void *ctx, nettle_random_func *random, mp_limb_t *scratch);
264 265

void
266
ecc_hash (const struct ecc_modulo *m,
267
	  mp_limb_t *hp,
Niels Möller's avatar
Niels Möller committed
268
	  size_t length, const uint8_t *digest);
269

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
/* Converts a point P in affine coordinates into a point R in jacobian
   coordinates. */
void
ecc_a_to_j (const struct ecc_curve *ecc,
	    mp_limb_t *r, const mp_limb_t *p);

/* Converts a point P in jacobian coordinates into a point R in affine
   coordinates. If op == 1, produce x coordinate only. If op == 2,
   produce the x coordiante only, and in also it modulo q. FIXME: For
   the public interface, have separate for the three cases, and use
   this flag argument only for the internal ecc->h_to_a function. */
void
ecc_j_to_a (const struct ecc_curve *ecc,
	    int op,
	    mp_limb_t *r, const mp_limb_t *p,
	    mp_limb_t *scratch);

/* Converts a point P on an Edwards curve to affine coordinates on
   the corresponding Montgomery curve. */
void
ecc_eh_to_a (const struct ecc_curve *ecc,
	     int op,
	     mp_limb_t *r, const mp_limb_t *p,
	     mp_limb_t *scratch);

/* Group operations */

/* Point doubling, with jacobian input and output. Corner cases:
   Correctly sets R = 0 (r_Z = 0) if p = 0 or 2p = 0. */
void
ecc_dup_jj (const struct ecc_curve *ecc,
	    mp_limb_t *r, const mp_limb_t *p,
	    mp_limb_t *scratch);

/* Point addition, with jacobian output, one jacobian input and one
   affine input. Corner cases: Fails for the cases

     P = Q != 0                       Duplication of non-zero point
     P = 0, Q != 0 or P != 0, Q = 0   One input zero
   
     Correctly gives R = 0 if P = Q = 0 or P = -Q. */
void
ecc_add_jja (const struct ecc_curve *ecc,
	     mp_limb_t *r, const mp_limb_t *p, const mp_limb_t *q,
	     mp_limb_t *scratch);

/* Point addition with Jacobian input and output. */
void
ecc_add_jjj (const struct ecc_curve *ecc,
	     mp_limb_t *r, const mp_limb_t *p, const mp_limb_t *q,
	     mp_limb_t *scratch);

/* Point doubling on an Edwards curve, with homogeneous
   cooordinates. */
void
ecc_dup_eh (const struct ecc_curve *ecc,
	    mp_limb_t *r, const mp_limb_t *p,
	    mp_limb_t *scratch);

void
ecc_add_eh (const struct ecc_curve *ecc,
	    mp_limb_t *r, const mp_limb_t *p, const mp_limb_t *q,
	    mp_limb_t *scratch);

void
ecc_add_ehh (const struct ecc_curve *ecc,
	     mp_limb_t *r, const mp_limb_t *p, const mp_limb_t *q,
	     mp_limb_t *scratch);

/* Computes N * the group generator. N is an array of ecc_size()
   limbs. It must be in the range 0 < N < group order, then R != 0,
   and the algorithm can work without any intermediate values getting
   to zero. */ 
void
ecc_mul_g (const struct ecc_curve *ecc, mp_limb_t *r,
	   const mp_limb_t *np, mp_limb_t *scratch);

/* Computes N * P. The scalar N is the same as for ecc_mul_g. P is a
   non-zero point on the curve, in affine coordinates. Output R is a
   non-zero point, in Jacobian coordinates. */
void
ecc_mul_a (const struct ecc_curve *ecc,
	   mp_limb_t *r,
	   const mp_limb_t *np, const mp_limb_t *p,
	   mp_limb_t *scratch);

void
ecc_mul_g_eh (const struct ecc_curve *ecc, mp_limb_t *r,
	      const mp_limb_t *np, mp_limb_t *scratch);

void
ecc_mul_a_eh (const struct ecc_curve *ecc,
	      mp_limb_t *r,
	      const mp_limb_t *np, const mp_limb_t *p,
	      mp_limb_t *scratch);

Niels Möller's avatar
Niels Möller committed
366 367 368 369 370 371 372 373 374 375 376 377 378 379
void
cnd_copy (int cnd, mp_limb_t *rp, const mp_limb_t *ap, mp_size_t n);

mp_limb_t
sec_add_1 (mp_limb_t *rp, mp_limb_t *ap, mp_size_t n, mp_limb_t b);

mp_limb_t
sec_sub_1 (mp_limb_t *rp, mp_limb_t *ap, mp_size_t n, mp_limb_t b);

void
sec_tabselect (mp_limb_t *rp, mp_size_t rn,
	       const mp_limb_t *table, unsigned tn,
	       unsigned k);

380 381 382 383
void
curve25519_eh_to_x (mp_limb_t *xp, const mp_limb_t *p,
		    mp_limb_t *scratch);

Niels Möller's avatar
Niels Möller committed
384
/* Current scratch needs: */
385
#define ECC_MOD_INV_ITCH(size) (2*(size))
Niels Möller's avatar
Niels Möller committed
386
#define ECC_J_TO_A_ITCH(size) (5*(size))
387
#define ECC_EH_TO_A_ITCH(size, inv) (2*(size)+(inv))
Niels Möller's avatar
Niels Möller committed
388
#define ECC_DUP_JJ_ITCH(size) (5*(size))
389
#define ECC_DUP_EH_ITCH(size) (5*(size))
Niels Möller's avatar
Niels Möller committed
390 391
#define ECC_ADD_JJA_ITCH(size) (6*(size))
#define ECC_ADD_JJJ_ITCH(size) (8*(size))
392
#define ECC_ADD_EH_ITCH(size) (6*(size))
393
#define ECC_ADD_EHH_ITCH(size) (7*(size))
Niels Möller's avatar
Niels Möller committed
394
#define ECC_MUL_G_ITCH(size) (9*(size))
395
#define ECC_MUL_G_EH_ITCH(size) (9*(size))
Niels Möller's avatar
Niels Möller committed
396 397 398 399 400 401
#if ECC_MUL_A_WBITS == 0
#define ECC_MUL_A_ITCH(size) (12*(size))
#else
#define ECC_MUL_A_ITCH(size) \
  (((3 << ECC_MUL_A_WBITS) + 11) * (size))
#endif
402 403 404 405 406 407
#if ECC_MUL_A_EH_WBITS == 0
#define ECC_MUL_A_EH_ITCH(size) (13*(size))
#else
#define ECC_MUL_A_EH_ITCH(size) \
  (((3 << ECC_MUL_A_EH_WBITS) + 10) * (size))
#endif
408
#define ECC_ECDSA_SIGN_ITCH(size) (12*(size))
409
#define ECC_MOD_RANDOM_ITCH(size) (size)
410
#define ECC_HASH_ITCH(size) (1+(size))
Niels Möller's avatar
Niels Möller committed
411 412

#endif /* NETTLE_ECC_INTERNAL_H_INCLUDED */