twofish.c 14.3 KB
Newer Older
1
2
/* twofish.c
 *
3
 * The twofish block cipher.
4
 */
5

6
/* twofish - An implementation of the twofish cipher.
Ruud de Rooij's avatar
Ruud de Rooij committed
7
8
9
10
11
 * Copyright (C) 1999 Ruud de Rooij <ruud@debian.org>
 *
 * Modifications for lsh, integrated testing
 * Copyright (C) 1999 J.H.M. Dassen (Ray) <jdassen@wi.LeidenUniv.nl>
 *
12
 * Integrated with the nettle library,
Niels Möller's avatar
Niels Möller committed
13
 * Copyright (C) 2001 Niels Möller
Ruud de Rooij's avatar
Ruud de Rooij committed
14
15
 */

16
17
18
19
20
21
22
/* nettle, low-level cryptographics library
 *
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
Niels Möller's avatar
Niels Möller committed
23
 * The nettle Library is distributed in the hope that it will be useful, but
24
25
26
27
28
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
Niels Möller's avatar
Niels Möller committed
29
 * along with the nettle library; see the file COPYING.LIB.  If not, write to
30
31
 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
 * MA 02111-1301, USA.
Ruud de Rooij's avatar
Ruud de Rooij committed
32
33
 */

34
35
36
#if HAVE_CONFIG_H
# include "config.h"
#endif
37
38

#include <assert.h>
Niels Möller's avatar
Niels Möller committed
39
#include <string.h>
40

41
42
43
44
#include "twofish.h"

#include "macros.h"

Ruud de Rooij's avatar
Ruud de Rooij committed
45
46
47
48
49
50
51
52
53
54
55
56
57
/* Bitwise rotations on 32-bit words.  These are defined as macros that
 * evaluate their argument twice, so do not apply to any expressions with
 * side effects.
 */

#define rol1(x) (((x) << 1) | (((x) & 0x80000000) >> 31))
#define rol8(x) (((x) << 8) | (((x) & 0xFF000000) >> 24))
#define rol9(x) (((x) << 9) | (((x) & 0xFF800000) >> 23))
#define ror1(x) (((x) >> 1) | (((x) & 0x00000001) << 31))

/* ------------------------------------------------------------------------- */

/* The permutations q0 and q1.  These are fixed permutations on 8-bit values.
58
 * The permutations have been computed using the program twofish-data,
Ruud de Rooij's avatar
Ruud de Rooij committed
59
60
61
 * which is distributed along with this file.
 */

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
static const uint8_t q0[256] = {
  0xA9,0x67,0xB3,0xE8,0x04,0xFD,0xA3,0x76,
  0x9A,0x92,0x80,0x78,0xE4,0xDD,0xD1,0x38,
  0x0D,0xC6,0x35,0x98,0x18,0xF7,0xEC,0x6C,
  0x43,0x75,0x37,0x26,0xFA,0x13,0x94,0x48,
  0xF2,0xD0,0x8B,0x30,0x84,0x54,0xDF,0x23,
  0x19,0x5B,0x3D,0x59,0xF3,0xAE,0xA2,0x82,
  0x63,0x01,0x83,0x2E,0xD9,0x51,0x9B,0x7C,
  0xA6,0xEB,0xA5,0xBE,0x16,0x0C,0xE3,0x61,
  0xC0,0x8C,0x3A,0xF5,0x73,0x2C,0x25,0x0B,
  0xBB,0x4E,0x89,0x6B,0x53,0x6A,0xB4,0xF1,
  0xE1,0xE6,0xBD,0x45,0xE2,0xF4,0xB6,0x66,
  0xCC,0x95,0x03,0x56,0xD4,0x1C,0x1E,0xD7,
  0xFB,0xC3,0x8E,0xB5,0xE9,0xCF,0xBF,0xBA,
  0xEA,0x77,0x39,0xAF,0x33,0xC9,0x62,0x71,
  0x81,0x79,0x09,0xAD,0x24,0xCD,0xF9,0xD8,
  0xE5,0xC5,0xB9,0x4D,0x44,0x08,0x86,0xE7,
  0xA1,0x1D,0xAA,0xED,0x06,0x70,0xB2,0xD2,
  0x41,0x7B,0xA0,0x11,0x31,0xC2,0x27,0x90,
  0x20,0xF6,0x60,0xFF,0x96,0x5C,0xB1,0xAB,
  0x9E,0x9C,0x52,0x1B,0x5F,0x93,0x0A,0xEF,
  0x91,0x85,0x49,0xEE,0x2D,0x4F,0x8F,0x3B,
  0x47,0x87,0x6D,0x46,0xD6,0x3E,0x69,0x64,
  0x2A,0xCE,0xCB,0x2F,0xFC,0x97,0x05,0x7A,
  0xAC,0x7F,0xD5,0x1A,0x4B,0x0E,0xA7,0x5A,
  0x28,0x14,0x3F,0x29,0x88,0x3C,0x4C,0x02,
  0xB8,0xDA,0xB0,0x17,0x55,0x1F,0x8A,0x7D,
  0x57,0xC7,0x8D,0x74,0xB7,0xC4,0x9F,0x72,
  0x7E,0x15,0x22,0x12,0x58,0x07,0x99,0x34,
  0x6E,0x50,0xDE,0x68,0x65,0xBC,0xDB,0xF8,
  0xC8,0xA8,0x2B,0x40,0xDC,0xFE,0x32,0xA4,
  0xCA,0x10,0x21,0xF0,0xD3,0x5D,0x0F,0x00,
  0x6F,0x9D,0x36,0x42,0x4A,0x5E,0xC1,0xE0,
};
Ruud de Rooij's avatar
Ruud de Rooij committed
96

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
static const uint8_t q1[256] = {
  0x75,0xF3,0xC6,0xF4,0xDB,0x7B,0xFB,0xC8,
  0x4A,0xD3,0xE6,0x6B,0x45,0x7D,0xE8,0x4B,
  0xD6,0x32,0xD8,0xFD,0x37,0x71,0xF1,0xE1,
  0x30,0x0F,0xF8,0x1B,0x87,0xFA,0x06,0x3F,
  0x5E,0xBA,0xAE,0x5B,0x8A,0x00,0xBC,0x9D,
  0x6D,0xC1,0xB1,0x0E,0x80,0x5D,0xD2,0xD5,
  0xA0,0x84,0x07,0x14,0xB5,0x90,0x2C,0xA3,
  0xB2,0x73,0x4C,0x54,0x92,0x74,0x36,0x51,
  0x38,0xB0,0xBD,0x5A,0xFC,0x60,0x62,0x96,
  0x6C,0x42,0xF7,0x10,0x7C,0x28,0x27,0x8C,
  0x13,0x95,0x9C,0xC7,0x24,0x46,0x3B,0x70,
  0xCA,0xE3,0x85,0xCB,0x11,0xD0,0x93,0xB8,
  0xA6,0x83,0x20,0xFF,0x9F,0x77,0xC3,0xCC,
  0x03,0x6F,0x08,0xBF,0x40,0xE7,0x2B,0xE2,
  0x79,0x0C,0xAA,0x82,0x41,0x3A,0xEA,0xB9,
  0xE4,0x9A,0xA4,0x97,0x7E,0xDA,0x7A,0x17,
  0x66,0x94,0xA1,0x1D,0x3D,0xF0,0xDE,0xB3,
  0x0B,0x72,0xA7,0x1C,0xEF,0xD1,0x53,0x3E,
  0x8F,0x33,0x26,0x5F,0xEC,0x76,0x2A,0x49,
  0x81,0x88,0xEE,0x21,0xC4,0x1A,0xEB,0xD9,
  0xC5,0x39,0x99,0xCD,0xAD,0x31,0x8B,0x01,
  0x18,0x23,0xDD,0x1F,0x4E,0x2D,0xF9,0x48,
  0x4F,0xF2,0x65,0x8E,0x78,0x5C,0x58,0x19,
  0x8D,0xE5,0x98,0x57,0x67,0x7F,0x05,0x64,
  0xAF,0x63,0xB6,0xFE,0xF5,0xB7,0x3C,0xA5,
  0xCE,0xE9,0x68,0x44,0xE0,0x4D,0x43,0x69,
  0x29,0x2E,0xAC,0x15,0x59,0xA8,0x0A,0x9E,
  0x6E,0x47,0xDF,0x34,0x35,0x6A,0xCF,0xDC,
  0x22,0xC9,0xC0,0x9B,0x89,0xD4,0xED,0xAB,
  0x12,0xA2,0x0D,0x52,0xBB,0x02,0x2F,0xA9,
  0xD7,0x61,0x1E,0xB4,0x50,0x04,0xF6,0xC2,
  0x16,0x25,0x86,0x56,0x55,0x09,0xBE,0x91,
};
Ruud de Rooij's avatar
Ruud de Rooij committed
131
132
133

/* ------------------------------------------------------------------------- */

134
/* uint8_t gf_multiply(uint8_t p, uint8_t a, uint8_t b)
Ruud de Rooij's avatar
Ruud de Rooij committed
135
136
137
138
139
140
141
142
143
144
145
146
147
 *
 * Multiplication in GF(2^8).
 *
 * This function multiplies a times b in the Galois Field GF(2^8) with
 * primitive polynomial p.
 * The representation of the polynomials a, b, and p uses bits with
 * values 2^i to represent the terms x^i.  The polynomial p contains an
 * implicit term x^8.
 *
 * Note that addition and subtraction in GF(2^8) is simply the XOR
 * operation.
 */

148
149
static uint8_t
gf_multiply(uint8_t p, uint8_t a, uint8_t b)
Ruud de Rooij's avatar
Ruud de Rooij committed
150
{
151
152
  uint32_t shift  = b;
  uint8_t result = 0;
153
154
155
156
157
158
  while (a)
    {
      if (a & 1) result ^= shift;
      a = a >> 1;
      shift = shift << 1;
      if (shift & 0x100) shift ^= p;
Ruud de Rooij's avatar
Ruud de Rooij committed
159
    }
160
  return result;
Ruud de Rooij's avatar
Ruud de Rooij committed
161
162
163
164
165
166
}

/* ------------------------------------------------------------------------- */

/* The matrix RS as specified in section 4.3 the twofish paper. */

167
static const uint8_t rs_matrix[4][8] = {
Ruud de Rooij's avatar
Ruud de Rooij committed
168
169
170
171
172
    { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E },
    { 0xA4, 0x56, 0x82, 0xF3, 0x1E, 0xC6, 0x68, 0xE5 },
    { 0x02, 0xA1, 0xFC, 0xC1, 0x47, 0xAE, 0x3D, 0x19 },
    { 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E, 0x03 } };

173
/* uint32_t compute_s(uint32_t m1, uint32_t m2);
Ruud de Rooij's avatar
Ruud de Rooij committed
174
175
176
177
178
179
180
181
182
 *
 * Computes the value RS * M, where M is a byte vector composed of the
 * bytes of m1 and m2.  Arithmetic is done in GF(2^8) with primitive
 * polynomial x^8 + x^6 + x^3 + x^2 + 1.
 *
 * This function is used to compute the sub-keys S which are in turn used
 * to generate the S-boxes.
 */

183
184
static uint32_t
compute_s(uint32_t m1, uint32_t m2)
Ruud de Rooij's avatar
Ruud de Rooij committed
185
{
186
  uint32_t s = 0;
187
188
189
190
191
192
193
194
195
196
197
  int i;
  for (i = 0; i < 4; i++)
    s |=  ((  gf_multiply(0x4D, m1,       rs_matrix[i][0])
	    ^ gf_multiply(0x4D, m1 >> 8,  rs_matrix[i][1])
	    ^ gf_multiply(0x4D, m1 >> 16, rs_matrix[i][2])
	    ^ gf_multiply(0x4D, m1 >> 24, rs_matrix[i][3])
	    ^ gf_multiply(0x4D, m2,       rs_matrix[i][4])
	    ^ gf_multiply(0x4D, m2 >> 8,  rs_matrix[i][5])
	    ^ gf_multiply(0x4D, m2 >> 16, rs_matrix[i][6])
	    ^ gf_multiply(0x4D, m2 >> 24, rs_matrix[i][7])) << (i*8));
  return s;
Ruud de Rooij's avatar
Ruud de Rooij committed
198
199
200
201
202
203
204
205
}

/* ------------------------------------------------------------------------- */

/* This table describes which q S-boxes are used for each byte in each stage
 * of the function h, cf. figure 2 of the twofish paper.
 */

206
207
208
209
210
static const uint8_t * const q_table[4][5] =
  { { q1, q1, q0, q0, q1 },
    { q0, q1, q1, q0, q0 },
    { q0, q0, q0, q1, q1 },
    { q1, q0, q1, q1, q0 } };
Ruud de Rooij's avatar
Ruud de Rooij committed
211
212
213

/* The matrix MDS as specified in section 4.3.2 of the twofish paper. */

214
static const uint8_t mds_matrix[4][4] = { { 0x01, 0xEF, 0x5B, 0x5B },
215
216
217
				 { 0x5B, 0xEF, 0xEF, 0x01 },
				 { 0xEF, 0x5B, 0x01, 0xEF },
				 { 0xEF, 0x01, 0xEF, 0x5B } };
Ruud de Rooij's avatar
Ruud de Rooij committed
218

219
/* uint32_t h_uint8_t(int k, int i, uint8_t x, uint8_t l0, uint8_t l1, uint8_t l2, uint8_t l3);
Ruud de Rooij's avatar
Ruud de Rooij committed
220
221
222
223
224
225
226
227
228
 *
 * Perform the h function (section 4.3.2) on one byte.  It consists of
 * repeated applications of the q permutation, followed by a XOR with
 * part of a sub-key.  Finally, the value is multiplied by one column of
 * the MDS matrix.  To obtain the result for a full word, the results of
 * h for the individual bytes are XORed.
 *
 * k is the key size (/ 64 bits), i is the byte number (0 = LSB), x is the
 * actual byte to apply the function to; l0, l1, l2, and l3 are the
229
 * appropriate bytes from the subkey.  Note that only l0..l(k-1) are used.
Ruud de Rooij's avatar
Ruud de Rooij committed
230
231
 */

232
233
static uint32_t
h_byte(int k, int i, uint8_t x, uint8_t l0, uint8_t l1, uint8_t l2, uint8_t l3)
Ruud de Rooij's avatar
Ruud de Rooij committed
234
{
235
  uint8_t y = q_table[i][4][l0 ^
236
237
238
239
            q_table[i][3][l1 ^
              q_table[i][2][k == 2 ? x : l2 ^
                q_table[i][1][k == 3 ? x : l3 ^ q_table[i][0][x]]]]];

240
241
242
243
  return ( ((uint32_t)gf_multiply(0x69, mds_matrix[0][i], y))
	   | ((uint32_t)gf_multiply(0x69, mds_matrix[1][i], y) << 8)
	   | ((uint32_t)gf_multiply(0x69, mds_matrix[2][i], y) << 16)
	   | ((uint32_t)gf_multiply(0x69, mds_matrix[3][i], y) << 24) );
Ruud de Rooij's avatar
Ruud de Rooij committed
244
245
}

246
/* uint32_t h(int k, uint8_t x, uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3);
Ruud de Rooij's avatar
Ruud de Rooij committed
247
248
249
250
 *
 * Perform the function h on a word.  See the description of h_byte() above.
 */

251
252
static uint32_t
h(int k, uint8_t x, uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3)
Ruud de Rooij's avatar
Ruud de Rooij committed
253
{
254
255
256
257
  return (  h_byte(k, 0, x, l0,       l1,       l2,       l3)
	  ^ h_byte(k, 1, x, l0 >> 8,  l1 >> 8,  l2 >> 8,  l3 >> 8)
	  ^ h_byte(k, 2, x, l0 >> 16, l1 >> 16, l2 >> 16, l3 >> 16)
	  ^ h_byte(k, 3, x, l0 >> 24, l1 >> 24, l2 >> 24, l3 >> 24) );
Ruud de Rooij's avatar
Ruud de Rooij committed
258
259
260
261
262
263
264
265
266
267
268
269
}


/* ------------------------------------------------------------------------- */

/* API */

/* Structure which contains the tables containing the subkeys and the
 * key-dependent s-boxes.
 */


270
/* Set up internal tables required for twofish encryption and decryption.
Ruud de Rooij's avatar
Ruud de Rooij committed
271
272
 *
 * The key size is specified in bytes.  Key sizes up to 32 bytes are
273
 * supported.  Larger key sizes are silently truncated.  
Ruud de Rooij's avatar
Ruud de Rooij committed
274
275
 */

276
void
277
twofish_set_key(struct twofish_ctx *context,
278
		size_t keysize, const uint8_t *key)
Ruud de Rooij's avatar
Ruud de Rooij committed
279
{
280
281
  uint8_t key_copy[32];
  uint32_t m[8], s[4], t;
282
  int i, j, k;
Ruud de Rooij's avatar
Ruud de Rooij committed
283

284
  /* Extend key as necessary */
Ruud de Rooij's avatar
Ruud de Rooij committed
285

286
  assert(keysize <= 32);
287

288
289
  /* We do a little more copying than necessary, but that doesn't
   * really matter. */
290
291
292
  memset(key_copy, 0, 32);
  memcpy(key_copy, key, keysize);

293
294
295
  for (i = 0; i<8; i++)
    m[i] = LE_READ_UINT32(key_copy + i*4);
  
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
  if (keysize <= 16)
    k = 2;
  else if (keysize <= 24)
    k = 3;
  else
    k = 4;

  /* Compute sub-keys */

  for (i = 0; i < 20; i++)
    {
      t = h(k, 2*i+1, m[1], m[3], m[5], m[7]);
      t = rol8(t);
      t += (context->keys[2*i] =
	    t + h(k, 2*i, m[0], m[2], m[4], m[6]));
      t = rol9(t);
      context->keys[2*i+1] = t;
Ruud de Rooij's avatar
Ruud de Rooij committed
313
314
    }

315
  /* Compute key-dependent S-boxes */
Ruud de Rooij's avatar
Ruud de Rooij committed
316

317
318
  for (i = 0; i < k; i++)
    s[k-1-i] = compute_s(m[2*i], m[2*i+1]);
Ruud de Rooij's avatar
Ruud de Rooij committed
319

320
321
322
323
324
325
326
  for (i = 0; i < 4; i++)
    for (j = 0; j < 256; j++)
      context->s_box[i][j] = h_byte(k, i, j,
				    s[0] >> (i*8),
				    s[1] >> (i*8),
				    s[2] >> (i*8),
				    s[3] >> (i*8));
Ruud de Rooij's avatar
Ruud de Rooij committed
327
328
}

329
/* Encrypt blocks of 16 bytes of data with the twofish algorithm.
Ruud de Rooij's avatar
Ruud de Rooij committed
330
 *
331
 * Before this function can be used, twofish_set_key() must be used in order to
Ruud de Rooij's avatar
Ruud de Rooij committed
332
 * set up various tables required for the encryption algorithm.
333
 * 
Ruud de Rooij's avatar
Ruud de Rooij committed
334
335
336
337
338
339
 * This function always encrypts 16 bytes of plaintext to 16 bytes of
 * ciphertext.  The memory areas of the plaintext and the ciphertext can
 * overlap.
 */

void
340
twofish_encrypt(const struct twofish_ctx *context,
341
		size_t length,
342
343
		uint8_t *ciphertext,
		const uint8_t *plaintext)
Ruud de Rooij's avatar
Ruud de Rooij committed
344
{
345
346
  const uint32_t * keys        = context->keys;
  const uint32_t (*s_box)[256] = context->s_box;
347
348

  assert( !(length % TWOFISH_BLOCK_SIZE) );
349
  for ( ; length; length -= TWOFISH_BLOCK_SIZE)
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
    {  
      uint32_t words[4];
      uint32_t r0, r1, r2, r3, t0, t1;
      int i;

      for (i = 0; i<4; i++, plaintext += 4)
	words[i] = LE_READ_UINT32(plaintext);

      r0 = words[0] ^ keys[0];
      r1 = words[1] ^ keys[1];
      r2 = words[2] ^ keys[2];
      r3 = words[3] ^ keys[3];
  
      for (i = 0; i < 8; i++) {
	t1 = (  s_box[1][r1 & 0xFF]
		^ s_box[2][(r1 >> 8) & 0xFF]
		^ s_box[3][(r1 >> 16) & 0xFF]
		^ s_box[0][(r1 >> 24) & 0xFF]);
	t0 = (  s_box[0][r0 & 0xFF]
		^ s_box[1][(r0 >> 8) & 0xFF]
		^ s_box[2][(r0 >> 16) & 0xFF]
		^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
	r3 = (t1 + t0 + keys[4*i+9]) ^ rol1(r3);
	r2 = (t0 + keys[4*i+8]) ^ r2;
	r2 = ror1(r2);

	t1 = (  s_box[1][r3 & 0xFF]
		^ s_box[2][(r3 >> 8) & 0xFF]
		^ s_box[3][(r3 >> 16) & 0xFF]
		^ s_box[0][(r3 >> 24) & 0xFF]);
	t0 = (  s_box[0][r2 & 0xFF]
		^ s_box[1][(r2 >> 8) & 0xFF]
		^ s_box[2][(r2 >> 16) & 0xFF]
		^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
	r1 = (t1 + t0 + keys[4*i+11]) ^ rol1(r1);
	r0 = (t0 + keys[4*i+10]) ^ r0;
	r0 = ror1(r0);
      }

      words[0] = r2 ^ keys[4];
      words[1] = r3 ^ keys[5];
      words[2] = r0 ^ keys[6];
      words[3] = r1 ^ keys[7];

      for (i = 0; i<4; i++, ciphertext += 4)
	LE_WRITE_UINT32(ciphertext, words[i]);
    }
Ruud de Rooij's avatar
Ruud de Rooij committed
397
398
}

399
/* Decrypt blocks of 16 bytes of data with the twofish algorithm.
Ruud de Rooij's avatar
Ruud de Rooij committed
400
 *
401
 * Before this function can be used, twofish_set_key() must be used in order to
Ruud de Rooij's avatar
Ruud de Rooij committed
402
 * set up various tables required for the decryption algorithm.
403
 * 
Ruud de Rooij's avatar
Ruud de Rooij committed
404
405
406
407
408
409
 * This function always decrypts 16 bytes of ciphertext to 16 bytes of
 * plaintext.  The memory areas of the plaintext and the ciphertext can
 * overlap.
 */

void
410
twofish_decrypt(const struct twofish_ctx *context,
411
		size_t length,
412
413
414
		uint8_t *plaintext,
		const uint8_t *ciphertext)

Ruud de Rooij's avatar
Ruud de Rooij committed
415
{
416
417
  const uint32_t *keys  = context->keys;
  const uint32_t (*s_box)[256] = context->s_box;
418
419

  assert( !(length % TWOFISH_BLOCK_SIZE) );
420
  for ( ; length; length -= TWOFISH_BLOCK_SIZE)
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    {  
      uint32_t words[4];
      uint32_t r0, r1, r2, r3, t0, t1;
      int i;

      for (i = 0; i<4; i++, ciphertext += 4)
	words[i] = LE_READ_UINT32(ciphertext);

      r0 = words[2] ^ keys[6];
      r1 = words[3] ^ keys[7];
      r2 = words[0] ^ keys[4];
      r3 = words[1] ^ keys[5];

      for (i = 0; i < 8; i++) {
	t1 = (  s_box[1][r3 & 0xFF]
		^ s_box[2][(r3 >> 8) & 0xFF]
		^ s_box[3][(r3 >> 16) & 0xFF]
		^ s_box[0][(r3 >> 24) & 0xFF]);
	t0 = (  s_box[0][r2 & 0xFF]
		^ s_box[1][(r2 >> 8) & 0xFF]
		^ s_box[2][(r2 >> 16) & 0xFF]
		^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
	r1 = (t1 + t0 + keys[39-4*i]) ^ r1;
	r1 = ror1(r1);
	r0 = (t0 + keys[38-4*i]) ^ rol1(r0);

	t1 = (  s_box[1][r1 & 0xFF]
		^ s_box[2][(r1 >> 8) & 0xFF]
		^ s_box[3][(r1 >> 16) & 0xFF]
		^ s_box[0][(r1 >> 24) & 0xFF]);
	t0 = (  s_box[0][r0 & 0xFF]
		^ s_box[1][(r0 >> 8) & 0xFF]
		^ s_box[2][(r0 >> 16) & 0xFF]
		^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
	r3 = (t1 + t0 + keys[37-4*i]) ^ r3;
	r3 = ror1(r3);
	r2 = (t0 + keys[36-4*i]) ^ rol1(r2);
      }

      words[0] = r0 ^ keys[0];
      words[1] = r1 ^ keys[1];
      words[2] = r2 ^ keys[2];
      words[3] = r3 ^ keys[3];

      for (i = 0; i<4; i++, plaintext += 4)
	LE_WRITE_UINT32(plaintext, words[i]);
    }
Ruud de Rooij's avatar
Ruud de Rooij committed
468
}