sha1-compress.c 10.3 KB
Newer Older
1
/* sha1-compress.c
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

   The compression function of the sha1 hash function.

   Copyright (C) 2001, 2004 Peter Gutmann, Andrew Kuchling, Niels Möller

   This file is part of GNU Nettle.

   GNU Nettle is free software: you can redistribute it and/or
   modify it under the terms of either:

     * the GNU Lesser General Public License as published by the Free
       Software Foundation; either version 3 of the License, or (at your
       option) any later version.

   or

     * the GNU General Public License as published by the Free
       Software Foundation; either version 2 of the License, or (at your
       option) any later version.

   or both in parallel, as here.

   GNU Nettle is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received copies of the GNU General Public License and
   the GNU Lesser General Public License along with this program.  If
   not, see http://www.gnu.org/licenses/.
*/
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

/* Here's the first paragraph of Peter Gutmann's posting,
 * <30ajo5$oe8@ccu2.auckland.ac.nz>: 
 *
 * The following is my SHA (FIPS 180) code updated to allow use of the "fixed"
 * SHA, thanks to Jim Gillogly and an anonymous contributor for the information on
 * what's changed in the new version.  The fix is a simple change which involves
 * adding a single rotate in the initial expansion function.  It is unknown
 * whether this is an optimal solution to the problem which was discovered in the
 * SHA or whether it's simply a bandaid which fixes the problem with a minimum of
 * effort (for example the reengineering of a great many Capstone chips).
 */

#if HAVE_CONFIG_H
# include "config.h"
#endif

50 51 52 53 54 55 56 57 58 59 60 61
#ifndef SHA1_DEBUG
# define SHA1_DEBUG 0
#endif

#if SHA1_DEBUG
# include <stdio.h>
# define DEBUG(i) \
  fprintf(stderr, "%2d: %8x %8x %8x %8x %8x\n", i, A, B, C, D ,E)
#else
# define DEBUG(i)
#endif

62 63 64 65
#include <assert.h>
#include <stdlib.h>
#include <string.h>

66
#include "sha1.h"
67 68 69 70 71 72 73 74 75 76

#include "macros.h"

/* A block, treated as a sequence of 32-bit words. */
#define SHA1_DATA_LENGTH 16

/* The SHA f()-functions.  The f1 and f3 functions can be optimized to
   save one boolean operation each - thanks to Rich Schroeppel,
   rcs@cs.arizona.edu for discovering this */

77 78 79 80 81 82
/* FIXME: Can save a temporary in f3 by using ( (x & y) + (z & (x ^
   y)) ), and then, in the round, compute one of the terms and add it
   into the destination word before computing the second term. Credits
   to George Spelvin for pointing this out. Unfortunately, gcc
   doesn't seem to be smart enough to take advantage of this. */

83 84 85 86 87
/* #define f1(x,y,z) ( ( x & y ) | ( ~x & z ) )            Rounds  0-19 */
#define f1(x,y,z)   ( z ^ ( x & ( y ^ z ) ) )           /* Rounds  0-19 */
#define f2(x,y,z)   ( x ^ y ^ z )                       /* Rounds 20-39 */
/* #define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) Rounds 40-59 */
#define f3(x,y,z)   ( ( x & y ) | ( z & ( x | y ) ) )   /* Rounds 40-59 */
88
#define f4 f2
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

/* The SHA Mysterious Constants */

#define K1  0x5A827999L                                 /* Rounds  0-19 */
#define K2  0x6ED9EBA1L                                 /* Rounds 20-39 */
#define K3  0x8F1BBCDCL                                 /* Rounds 40-59 */
#define K4  0xCA62C1D6L                                 /* Rounds 60-79 */

/* The initial expanding function.  The hash function is defined over an
   80-word expanded input array W, where the first 16 are copies of the input
   data, and the remaining 64 are defined by

        W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]

   This implementation generates these values on the fly in a circular
   buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
   optimization.

   The updated SHA changes the expanding function by adding a rotate of 1
   bit.  Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
   for this information */

#define expand(W,i) ( W[ i & 15 ] = \
Niels Möller's avatar
Niels Möller committed
112 113
		      ROTL32( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \
				   W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) )
114 115 116 117


/* The prototype SHA sub-round.  The fundamental sub-round is:

Niels Möller's avatar
Niels Möller committed
118
        a' = e + ROTL32( 5, a ) + f( b, c, d ) + k + data;
119
        b' = a;
Niels Möller's avatar
Niels Möller committed
120
        c' = ROTL32( 30, b );
121 122 123 124 125 126 127 128 129
        d' = c;
        e' = d;

   but this is implemented by unrolling the loop 5 times and renaming the
   variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
   This code is then replicated 20 times for each of the 4 functions, using
   the next 20 values from the W[] array each time */

#define subRound(a, b, c, d, e, f, k, data) \
Niels Möller's avatar
Niels Möller committed
130
    ( e += ROTL32( 5, a ) + f( b, c, d ) + k + data, b = ROTL32( 30, b ) )
131

132 133 134 135 136 137 138
/* For fat builds */
#if HAVE_NATIVE_sha1_compress
void
_nettle_sha1_compress_c(uint32_t *state, const uint8_t *input);
#define _nettle_sha1_compress _nettle_sha1_compress_c
#endif

139 140 141
/* Perform the SHA transformation.  Note that this code, like MD5, seems to
   break some optimizing compilers due to the complexity of the expressions
   and the size of the basic block.  It may be necessary to split it into
142
   sections, e.g. based on the four subrounds. */
143 144

void
145
_nettle_sha1_compress(uint32_t *state, const uint8_t *input)
146
{
147
  uint32_t data[SHA1_DATA_LENGTH];
148
  uint32_t A, B, C, D, E;     /* Local vars */
149 150
  int i;

151
  for (i = 0; i < SHA1_DATA_LENGTH; i++, input+= 4)
152 153 154
    {
      data[i] = READ_UINT32(input);
    }
155 156 157 158 159 160 161 162

  /* Set up first buffer and local data buffer */
  A = state[0];
  B = state[1];
  C = state[2];
  D = state[3];
  E = state[4];

163
  DEBUG(-1);
164
  /* Heavy mangling, in 4 sub-rounds of 20 interations each. */
165 166
  subRound( A, B, C, D, E, f1, K1, data[ 0] ); DEBUG(0);
  subRound( E, A, B, C, D, f1, K1, data[ 1] ); DEBUG(1);
167 168 169 170 171 172 173 174 175 176 177 178 179
  subRound( D, E, A, B, C, f1, K1, data[ 2] );
  subRound( C, D, E, A, B, f1, K1, data[ 3] );
  subRound( B, C, D, E, A, f1, K1, data[ 4] );
  subRound( A, B, C, D, E, f1, K1, data[ 5] );
  subRound( E, A, B, C, D, f1, K1, data[ 6] );
  subRound( D, E, A, B, C, f1, K1, data[ 7] );
  subRound( C, D, E, A, B, f1, K1, data[ 8] );
  subRound( B, C, D, E, A, f1, K1, data[ 9] );
  subRound( A, B, C, D, E, f1, K1, data[10] );
  subRound( E, A, B, C, D, f1, K1, data[11] );
  subRound( D, E, A, B, C, f1, K1, data[12] );
  subRound( C, D, E, A, B, f1, K1, data[13] );
  subRound( B, C, D, E, A, f1, K1, data[14] );
180 181 182 183 184 185 186 187
  subRound( A, B, C, D, E, f1, K1, data[15] ); DEBUG(15);
  subRound( E, A, B, C, D, f1, K1, expand( data, 16 ) ); DEBUG(16);
  subRound( D, E, A, B, C, f1, K1, expand( data, 17 ) ); DEBUG(17);
  subRound( C, D, E, A, B, f1, K1, expand( data, 18 ) ); DEBUG(18);
  subRound( B, C, D, E, A, f1, K1, expand( data, 19 ) ); DEBUG(19);

  subRound( A, B, C, D, E, f2, K2, expand( data, 20 ) ); DEBUG(20);
  subRound( E, A, B, C, D, f2, K2, expand( data, 21 ) ); DEBUG(21);
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
  subRound( D, E, A, B, C, f2, K2, expand( data, 22 ) );
  subRound( C, D, E, A, B, f2, K2, expand( data, 23 ) );
  subRound( B, C, D, E, A, f2, K2, expand( data, 24 ) );
  subRound( A, B, C, D, E, f2, K2, expand( data, 25 ) );
  subRound( E, A, B, C, D, f2, K2, expand( data, 26 ) );
  subRound( D, E, A, B, C, f2, K2, expand( data, 27 ) );
  subRound( C, D, E, A, B, f2, K2, expand( data, 28 ) );
  subRound( B, C, D, E, A, f2, K2, expand( data, 29 ) );
  subRound( A, B, C, D, E, f2, K2, expand( data, 30 ) );
  subRound( E, A, B, C, D, f2, K2, expand( data, 31 ) );
  subRound( D, E, A, B, C, f2, K2, expand( data, 32 ) );
  subRound( C, D, E, A, B, f2, K2, expand( data, 33 ) );
  subRound( B, C, D, E, A, f2, K2, expand( data, 34 ) );
  subRound( A, B, C, D, E, f2, K2, expand( data, 35 ) );
  subRound( E, A, B, C, D, f2, K2, expand( data, 36 ) );
  subRound( D, E, A, B, C, f2, K2, expand( data, 37 ) );
204 205
  subRound( C, D, E, A, B, f2, K2, expand( data, 38 ) ); DEBUG(38);
  subRound( B, C, D, E, A, f2, K2, expand( data, 39 ) ); DEBUG(39);
206

207 208
  subRound( A, B, C, D, E, f3, K3, expand( data, 40 ) ); DEBUG(40);
  subRound( E, A, B, C, D, f3, K3, expand( data, 41 ) ); DEBUG(41);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
  subRound( D, E, A, B, C, f3, K3, expand( data, 42 ) );
  subRound( C, D, E, A, B, f3, K3, expand( data, 43 ) );
  subRound( B, C, D, E, A, f3, K3, expand( data, 44 ) );
  subRound( A, B, C, D, E, f3, K3, expand( data, 45 ) );
  subRound( E, A, B, C, D, f3, K3, expand( data, 46 ) );
  subRound( D, E, A, B, C, f3, K3, expand( data, 47 ) );
  subRound( C, D, E, A, B, f3, K3, expand( data, 48 ) );
  subRound( B, C, D, E, A, f3, K3, expand( data, 49 ) );
  subRound( A, B, C, D, E, f3, K3, expand( data, 50 ) );
  subRound( E, A, B, C, D, f3, K3, expand( data, 51 ) );
  subRound( D, E, A, B, C, f3, K3, expand( data, 52 ) );
  subRound( C, D, E, A, B, f3, K3, expand( data, 53 ) );
  subRound( B, C, D, E, A, f3, K3, expand( data, 54 ) );
  subRound( A, B, C, D, E, f3, K3, expand( data, 55 ) );
  subRound( E, A, B, C, D, f3, K3, expand( data, 56 ) );
  subRound( D, E, A, B, C, f3, K3, expand( data, 57 ) );
225 226
  subRound( C, D, E, A, B, f3, K3, expand( data, 58 ) ); DEBUG(58);
  subRound( B, C, D, E, A, f3, K3, expand( data, 59 ) ); DEBUG(59);
227

228 229
  subRound( A, B, C, D, E, f4, K4, expand( data, 60 ) ); DEBUG(60);
  subRound( E, A, B, C, D, f4, K4, expand( data, 61 ) ); DEBUG(61);
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
  subRound( D, E, A, B, C, f4, K4, expand( data, 62 ) );
  subRound( C, D, E, A, B, f4, K4, expand( data, 63 ) );
  subRound( B, C, D, E, A, f4, K4, expand( data, 64 ) );
  subRound( A, B, C, D, E, f4, K4, expand( data, 65 ) );
  subRound( E, A, B, C, D, f4, K4, expand( data, 66 ) );
  subRound( D, E, A, B, C, f4, K4, expand( data, 67 ) );
  subRound( C, D, E, A, B, f4, K4, expand( data, 68 ) );
  subRound( B, C, D, E, A, f4, K4, expand( data, 69 ) );
  subRound( A, B, C, D, E, f4, K4, expand( data, 70 ) );
  subRound( E, A, B, C, D, f4, K4, expand( data, 71 ) );
  subRound( D, E, A, B, C, f4, K4, expand( data, 72 ) );
  subRound( C, D, E, A, B, f4, K4, expand( data, 73 ) );
  subRound( B, C, D, E, A, f4, K4, expand( data, 74 ) );
  subRound( A, B, C, D, E, f4, K4, expand( data, 75 ) );
  subRound( E, A, B, C, D, f4, K4, expand( data, 76 ) );
  subRound( D, E, A, B, C, f4, K4, expand( data, 77 ) );
246 247
  subRound( C, D, E, A, B, f4, K4, expand( data, 78 ) ); DEBUG(78);
  subRound( B, C, D, E, A, f4, K4, expand( data, 79 ) ); DEBUG(79);
248 249 250 251 252 253 254

  /* Build message digest */
  state[0] += A;
  state[1] += B;
  state[2] += C;
  state[3] += D;
  state[4] += E;
255 256 257 258 259

#if SHA1_DEBUG
  fprintf(stderr, "99: %8x %8x %8x %8x %8x\n",
	  state[0], state[1], state[2], state[3], state[4]);
#endif
260
}