Commit 343b4bad authored by Niels Möller's avatar Niels Möller

* Makefile.in (nettle_SOURCES): Added sha256-compress.c.

* sha256.c: Reorganized to use _nettle_sha256_compress.

* sha256-compress.c (_nettle_sha256_compress): Compression
function extracted from sha256.c to a new file.

Rev: nettle/ChangeLog:1.56
Rev: nettle/Makefile.in:1.17
Rev: nettle/sha.h:1.3
Rev: nettle/sha256-compress.c:1.1
Rev: nettle/sha256.c:1.4
parent 97aca948
2010-03-24 Niels Mller <nisse@lysator.liu.se>
* Makefile.in (nettle_SOURCES): Added sha256-compress.c.
* sha256.c: Reorganized to use _nettle_sha256_compress.
* sha256-compress.c (_nettle_sha256_compress): Compression
function extracted from sha256.c to a new file.
* examples/nettle-benchmark.c (main): Benchmark sha512.
* rsa-keygen.c (rsa_generate_keypair): Ensure that bit size of e
......
......@@ -64,7 +64,7 @@ nettle_SOURCES = aes-decrypt-internal.c aes-decrypt.c \
knuth-lfib.c \
md2.c md2-meta.c md4.c md4-meta.c \
md5.c md5-compress.c md5-compat.c md5-meta.c \
sha1.c sha1-compress.c sha1-meta.c sha256.c sha256-meta.c \
sha1.c sha1-compress.c sha1-meta.c sha256.c sha256-compress.c sha256-meta.c \
sha512.c sha512-meta.c \
serpent.c serpent-meta.c \
twofish.c twofish-meta.c \
......
......@@ -106,6 +106,12 @@ sha256_digest(struct sha256_ctx *ctx,
unsigned length,
uint8_t *digest);
/* Internal compression function. STATE points to 8 uint32_t words,
DATA points to 64 bytes of input data, possibly unaligned, and K
points to the table of constants. */
void
_nettle_sha256_compress(uint32_t *state, const uint8_t *data, const uint32_t *k);
/* SHA512 */
#define SHA512_DIGEST_SIZE 64
......
/* sha256-compress.c
*
* The compression function of the sha256 hash function.
*/
/* nettle, low-level cryptographics library
*
* Copyright (C) 2001, 2010 Niels Möller
*
* The nettle library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* The nettle library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the nettle library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*/
#if HAVE_CONFIG_H
# include "config.h"
#endif
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "sha.h"
#include "macros.h"
/* A block, treated as a sequence of 32-bit words. */
#define SHA256_DATA_LENGTH 16
#define ROTR(n,x) ((x)>>(n) | ((x)<<(32-(n))))
#define SHR(n,x) ((x)>>(n))
/* The SHA256 functions. The Choice function is the same as the SHA1
function f1, and the majority function is the same as the SHA1 f3
function. They can be optimized to save one boolean operation each
- thanks to Rich Schroeppel, rcs@cs.arizona.edu for discovering
this */
/* #define Choice(x,y,z) ( ( (x) & (y) ) | ( ~(x) & (z) ) ) */
#define Choice(x,y,z) ( (z) ^ ( (x) & ( (y) ^ (z) ) ) )
/* #define Majority(x,y,z) ( ((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)) ) */
#define Majority(x,y,z) ( ((x) & (y)) ^ ((z) & ((x) ^ (y))) )
#define S0(x) (ROTR(2,(x)) ^ ROTR(13,(x)) ^ ROTR(22,(x)))
#define S1(x) (ROTR(6,(x)) ^ ROTR(11,(x)) ^ ROTR(25,(x)))
#define s0(x) (ROTR(7,(x)) ^ ROTR(18,(x)) ^ SHR(3,(x)))
#define s1(x) (ROTR(17,(x)) ^ ROTR(19,(x)) ^ SHR(10,(x)))
/* The initial expanding function. The hash function is defined over an
64-word expanded input array W, where the first 16 are copies of the input
data, and the remaining 64 are defined by
W[ t ] = s1(W[t-2]) + W[t-7] + s0(W[i-15]) + W[i-16]
This implementation generates these values on the fly in a circular
buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
optimization.
*/
#define EXPAND(W,i) \
( W[(i) & 15 ] += (s1(W[((i)-2) & 15]) + W[((i)-7) & 15] + s0(W[((i)-15) & 15])) )
/* The prototype SHA sub-round. The fundamental sub-round is:
T1 = h + S1(e) + Choice(e,f,g) + K[t] + W[t]
T2 = S0(a) + Majority(a,b,c)
a' = T1+T2
b' = a
c' = b
d' = c
e' = d + T1
f' = e
g' = f
h' = g
but this is implemented by unrolling the loop 8 times and renaming
the variables
( h, a, b, c, d, e, f, g ) = ( a, b, c, d, e, f, g, h ) each
iteration. */
/* It's crucial that DATA is only used once, as that argument will
* have side effects. */
#define ROUND(a,b,c,d,e,f,g,h,k,data) do { \
uint32_t T = h + S1(e) + Choice(e,f,g) + k + data; \
d += T; \
h = T + S0(a) + Majority(a,b,c); \
} while (0)
void
_nettle_sha256_compress(uint32_t *state, const uint8_t *input, const uint32_t *k)
{
uint32_t data[SHA256_DATA_LENGTH];
uint32_t A, B, C, D, E, F, G, H; /* Local vars */
unsigned i;
uint32_t *d;
for (i = 0; i < SHA256_DATA_LENGTH; i++, input+= 4)
{
data[i] = READ_UINT32(input);
}
/* Set up first buffer and local data buffer */
A = state[0];
B = state[1];
C = state[2];
D = state[3];
E = state[4];
F = state[5];
G = state[6];
H = state[7];
/* Heavy mangling */
/* First 16 subrounds that act on the original data */
for (i = 0, d = data; i<16; i+=8, k += 8, d+= 8)
{
ROUND(A, B, C, D, E, F, G, H, k[0], d[0]);
ROUND(H, A, B, C, D, E, F, G, k[1], d[1]);
ROUND(G, H, A, B, C, D, E, F, k[2], d[2]);
ROUND(F, G, H, A, B, C, D, E, k[3], d[3]);
ROUND(E, F, G, H, A, B, C, D, k[4], d[4]);
ROUND(D, E, F, G, H, A, B, C, k[5], d[5]);
ROUND(C, D, E, F, G, H, A, B, k[6], d[6]);
ROUND(B, C, D, E, F, G, H, A, k[7], d[7]);
}
for (; i<64; i += 16, k+= 16)
{
ROUND(A, B, C, D, E, F, G, H, k[ 0], EXPAND(data, 0));
ROUND(H, A, B, C, D, E, F, G, k[ 1], EXPAND(data, 1));
ROUND(G, H, A, B, C, D, E, F, k[ 2], EXPAND(data, 2));
ROUND(F, G, H, A, B, C, D, E, k[ 3], EXPAND(data, 3));
ROUND(E, F, G, H, A, B, C, D, k[ 4], EXPAND(data, 4));
ROUND(D, E, F, G, H, A, B, C, k[ 5], EXPAND(data, 5));
ROUND(C, D, E, F, G, H, A, B, k[ 6], EXPAND(data, 6));
ROUND(B, C, D, E, F, G, H, A, k[ 7], EXPAND(data, 7));
ROUND(A, B, C, D, E, F, G, H, k[ 8], EXPAND(data, 8));
ROUND(H, A, B, C, D, E, F, G, k[ 9], EXPAND(data, 9));
ROUND(G, H, A, B, C, D, E, F, k[10], EXPAND(data, 10));
ROUND(F, G, H, A, B, C, D, E, k[11], EXPAND(data, 11));
ROUND(E, F, G, H, A, B, C, D, k[12], EXPAND(data, 12));
ROUND(D, E, F, G, H, A, B, C, k[13], EXPAND(data, 13));
ROUND(C, D, E, F, G, H, A, B, k[14], EXPAND(data, 14));
ROUND(B, C, D, E, F, G, H, A, k[15], EXPAND(data, 15));
}
/* Update state */
state[0] += A;
state[1] += B;
state[2] += C;
state[3] += D;
state[4] += E;
state[5] += F;
state[6] += G;
state[7] += H;
}
......@@ -39,29 +39,6 @@
#include "macros.h"
/* A block, treated as a sequence of 32-bit words. */
#define SHA256_DATA_LENGTH 16
#define ROTR(n,x) ((x)>>(n) | ((x)<<(32-(n))))
#define SHR(n,x) ((x)>>(n))
/* The SHA256 functions. The Choice function is the same as the SHA1
function f1, and the majority function is the same as the SHA1 f3
function. They can be optimized to save one boolean operation each
- thanks to Rich Schroeppel, rcs@cs.arizona.edu for discovering
this */
/* #define Choice(x,y,z) ( ( (x) & (y) ) | ( ~(x) & (z) ) ) */
#define Choice(x,y,z) ( (z) ^ ( (x) & ( (y) ^ (z) ) ) )
/* #define Majority(x,y,z) ( ((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)) ) */
#define Majority(x,y,z) ( ((x) & (y)) ^ ((z) & ((x) ^ (y))) )
#define S0(x) (ROTR(2,(x)) ^ ROTR(13,(x)) ^ ROTR(22,(x)))
#define S1(x) (ROTR(6,(x)) ^ ROTR(11,(x)) ^ ROTR(25,(x)))
#define s0(x) (ROTR(7,(x)) ^ ROTR(18,(x)) ^ SHR(3,(x)))
#define s1(x) (ROTR(17,(x)) ^ ROTR(19,(x)) ^ SHR(10,(x)))
/* Generated by the shadata program. */
static const uint32_t
K[64] =
......@@ -84,47 +61,6 @@ K[64] =
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL,
};
/* The initial expanding function. The hash function is defined over an
64-word expanded input array W, where the first 16 are copies of the input
data, and the remaining 64 are defined by
W[ t ] = s1(W[t-2]) + W[t-7] + s0(W[i-15]) + W[i-16]
This implementation generates these values on the fly in a circular
buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
optimization.
*/
#define EXPAND(W,i) \
( W[(i) & 15 ] += (s1(W[((i)-2) & 15]) + W[((i)-7) & 15] + s0(W[((i)-15) & 15])) )
/* The prototype SHA sub-round. The fundamental sub-round is:
T1 = h + S1(e) + Choice(e,f,g) + K[t] + W[t]
T2 = S0(a) + Majority(a,b,c)
a' = T1+T2
b' = a
c' = b
d' = c
e' = d + T1
f' = e
g' = f
h' = g
but this is implemented by unrolling the loop 8 times and renaming
the variables
( h, a, b, c, d, e, f, g ) = ( a, b, c, d, e, f, g, h ) each
iteration. This code is then replicated 8, using the next 8 values
from the W[] array each time */
/* It's crucial that DATA is only used once, as that argument will
* have side effects. */
#define ROUND(a,b,c,d,e,f,g,h,k,data) do { \
uint32_t T = h + S1(e) + Choice(e,f,g) + k + data; \
d += T; \
h = T + S0(a) + Majority(a,b,c); \
} while (0)
/* Initialize the SHA values */
void
......@@ -146,93 +82,7 @@ sha256_init(struct sha256_ctx *ctx)
ctx->index = 0;
}
/* Perform the SHA transformation. Note that this code, like MD5, seems to
break some optimizing compilers due to the complexity of the expressions
and the size of the basic block. It may be necessary to split it into
sections, e.g. based on the four subrounds
Note that this function destroys the data area */
static void
sha256_transform(uint32_t *state, uint32_t *data)
{
uint32_t A, B, C, D, E, F, G, H; /* Local vars */
unsigned i;
const uint32_t *k;
uint32_t *d;
/* Set up first buffer and local data buffer */
A = state[0];
B = state[1];
C = state[2];
D = state[3];
E = state[4];
F = state[5];
G = state[6];
H = state[7];
/* Heavy mangling */
/* First 16 subrounds that act on the original data */
for (i = 0, k = K, d = data; i<16; i+=8, k += 8, d+= 8)
{
ROUND(A, B, C, D, E, F, G, H, k[0], d[0]);
ROUND(H, A, B, C, D, E, F, G, k[1], d[1]);
ROUND(G, H, A, B, C, D, E, F, k[2], d[2]);
ROUND(F, G, H, A, B, C, D, E, k[3], d[3]);
ROUND(E, F, G, H, A, B, C, D, k[4], d[4]);
ROUND(D, E, F, G, H, A, B, C, k[5], d[5]);
ROUND(C, D, E, F, G, H, A, B, k[6], d[6]);
ROUND(B, C, D, E, F, G, H, A, k[7], d[7]);
}
for (; i<64; i += 16, k+= 16)
{
ROUND(A, B, C, D, E, F, G, H, k[ 0], EXPAND(data, 0));
ROUND(H, A, B, C, D, E, F, G, k[ 1], EXPAND(data, 1));
ROUND(G, H, A, B, C, D, E, F, k[ 2], EXPAND(data, 2));
ROUND(F, G, H, A, B, C, D, E, k[ 3], EXPAND(data, 3));
ROUND(E, F, G, H, A, B, C, D, k[ 4], EXPAND(data, 4));
ROUND(D, E, F, G, H, A, B, C, k[ 5], EXPAND(data, 5));
ROUND(C, D, E, F, G, H, A, B, k[ 6], EXPAND(data, 6));
ROUND(B, C, D, E, F, G, H, A, k[ 7], EXPAND(data, 7));
ROUND(A, B, C, D, E, F, G, H, k[ 8], EXPAND(data, 8));
ROUND(H, A, B, C, D, E, F, G, k[ 9], EXPAND(data, 9));
ROUND(G, H, A, B, C, D, E, F, k[10], EXPAND(data, 10));
ROUND(F, G, H, A, B, C, D, E, k[11], EXPAND(data, 11));
ROUND(E, F, G, H, A, B, C, D, k[12], EXPAND(data, 12));
ROUND(D, E, F, G, H, A, B, C, k[13], EXPAND(data, 13));
ROUND(C, D, E, F, G, H, A, B, k[14], EXPAND(data, 14));
ROUND(B, C, D, E, F, G, H, A, k[15], EXPAND(data, 15));
}
/* Update state */
state[0] += A;
state[1] += B;
state[2] += C;
state[3] += D;
state[4] += E;
state[5] += F;
state[6] += G;
state[7] += H;
}
static void
sha256_block(struct sha256_ctx *ctx, const uint8_t *block)
{
uint32_t data[SHA256_DATA_LENGTH];
int i;
/* Update block count */
if (!++ctx->count_low)
++ctx->count_high;
/* Endian independent conversion */
for (i = 0; i<SHA256_DATA_LENGTH; i++, block += 4)
data[i] = READ_UINT32(block);
sha256_transform(ctx->state, data);
}
#define SHA256_INCR(ctx) ((ctx)->count_high += !++(ctx)->count_low)
void
sha256_update(struct sha256_ctx *ctx,
......@@ -250,14 +100,19 @@ sha256_update(struct sha256_ctx *ctx,
else
{
memcpy(ctx->block + ctx->index, buffer, left);
sha256_block(ctx, ctx->block);
_nettle_sha256_compress(ctx->state, ctx->block, K);
SHA256_INCR(ctx);
buffer += left;
length -= left;
}
}
while (length >= SHA256_DATA_SIZE)
{
sha256_block(ctx, buffer);
_nettle_sha256_compress(ctx->state, buffer, K);
SHA256_INCR(ctx);
buffer += SHA256_DATA_SIZE;
length -= SHA256_DATA_SIZE;
}
......@@ -275,9 +130,9 @@ sha256_update(struct sha256_ctx *ctx,
static void
sha256_final(struct sha256_ctx *ctx)
{
uint32_t data[SHA256_DATA_LENGTH];
uint32_t bitcount_high;
uint32_t bitcount_low;
int i;
int words;
i = ctx->index;
......@@ -287,32 +142,29 @@ sha256_final(struct sha256_ctx *ctx)
assert(i < SHA256_DATA_SIZE);
ctx->block[i++] = 0x80;
/* Fill rest of word */
for( ; i & 3; i++)
ctx->block[i] = 0;
/* i is now a multiple of the word size 4 */
words = i >> 2;
for (i = 0; i < words; i++)
data[i] = READ_UINT32(ctx->block + 4*i);
if (words > (SHA256_DATA_LENGTH-2))
if (i > (SHA1_DATA_SIZE - 8))
{ /* No room for length in this block. Process it and
* pad with another one */
for (i = words ; i < SHA256_DATA_LENGTH; i++)
data[i] = 0;
sha256_transform(ctx->state, data);
for (i = 0; i < (SHA256_DATA_LENGTH-2); i++)
data[i] = 0;
memset(ctx->block + i, 0, SHA256_DATA_SIZE - i);
_nettle_sha256_compress(ctx->state, ctx->block, K);
i = 0;
}
else
for (i = words ; i < SHA256_DATA_LENGTH - 2; i++)
data[i] = 0;
if (i < (SHA256_DATA_SIZE - 8))
memset(ctx->block + i, 0, (SHA256_DATA_SIZE - 8) - i);
/* There are 512 = 2^9 bits in one block */
data[SHA256_DATA_LENGTH-2] = (ctx->count_high << 9) | (ctx->count_low >> 23);
data[SHA256_DATA_LENGTH-1] = (ctx->count_low << 9) | (ctx->index << 3);
sha256_transform(ctx->state, data);
bitcount_high = (ctx->count_high << 9) | (ctx->count_low >> 23);
bitcount_low = (ctx->count_low << 9) | (ctx->index << 3);
/* This is slightly inefficient, as the numbers are converted to
big-endian format, and will be converted back by the compression
function. It's probably not worth the effort to fix this. */
WRITE_UINT32(ctx->block + (SHA256_DATA_SIZE - 8), bitcount_high);
WRITE_UINT32(ctx->block + (SHA256_DATA_SIZE - 4), bitcount_low);
_nettle_sha256_compress(ctx->state, ctx->block, K);
}
void
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment