Commit d35e6f95 authored by Niels Möller's avatar Niels Möller

* sha512.c: Reorganized to use _nettle_sha512_compress.

* sha512-compress.c (_nettle_sha512_compress): Compression
function extracted from sha512.c to a new file.

* Makefile.in (nettle_SOURCES): Added sha256-compress.c and
sha512-compress.c.

Rev: nettle/ChangeLog:1.57
Rev: nettle/Makefile.in:1.18
Rev: nettle/sha.h:1.4
Rev: nettle/sha512-compress.c:1.1
Rev: nettle/sha512.c:1.2
parent 49b2a7eb
2010-03-24 Niels Mller <nisse@lysator.liu.se>
* Makefile.in (nettle_SOURCES): Added sha256-compress.c.
* sha512.c: Reorganized to use _nettle_sha512_compress.
* sha512-compress.c (_nettle_sha512_compress): Compression
function extracted from sha512.c to a new file.
* Makefile.in (nettle_SOURCES): Added sha256-compress.c and
sha512-compress.c.
* sha256.c: Reorganized to use _nettle_sha256_compress.
......
......@@ -65,7 +65,7 @@ nettle_SOURCES = aes-decrypt-internal.c aes-decrypt.c \
md2.c md2-meta.c md4.c md4-meta.c \
md5.c md5-compress.c md5-compat.c md5-meta.c \
sha1.c sha1-compress.c sha1-meta.c sha256.c sha256-compress.c sha256-meta.c \
sha512.c sha512-meta.c \
sha512.c sha512-compress.c sha512-meta.c \
serpent.c serpent-meta.c \
twofish.c twofish-meta.c \
yarrow256.c yarrow_key_event.c \
......
......@@ -141,6 +141,12 @@ sha512_digest(struct sha512_ctx *ctx,
unsigned length,
uint8_t *digest);
/* Internal compression function. STATE points to 8 uint64_t words,
DATA points to 128 bytes of input data, possibly unaligned, and K
points to the table of constants. */
void
_nettle_sha512_compress(uint64_t *state, const uint8_t *data, const uint64_t *k);
#ifdef __cplusplus
}
#endif
......
/* sha512-compress.c
*
* The compression function of the sha512 hash function.
*/
/* nettle, low-level cryptographics library
*
* Copyright (C) 2001, 2010 Niels Möller
*
* The nettle library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* The nettle library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the nettle library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*/
#if HAVE_CONFIG_H
# include "config.h"
#endif
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "sha.h"
#include "macros.h"
/* A block, treated as a sequence of 64-bit words. */
#define SHA512_DATA_LENGTH 16
#define ROTR(n,x) ((x)>>(n) | ((x)<<(64-(n))))
#define SHR(n,x) ((x)>>(n))
/* The SHA512 functions. The Choice function is the same as the SHA1
function f1, and the majority function is the same as the SHA1 f3
function, and the same as for SHA256. */
#define Choice(x,y,z) ( (z) ^ ( (x) & ( (y) ^ (z) ) ) )
#define Majority(x,y,z) ( ((x) & (y)) ^ ((z) & ((x) ^ (y))) )
#define S0(x) (ROTR(28,(x)) ^ ROTR(34,(x)) ^ ROTR(39,(x)))
#define S1(x) (ROTR(14,(x)) ^ ROTR(18,(x)) ^ ROTR(41,(x)))
#define s0(x) (ROTR(1,(x)) ^ ROTR(8,(x)) ^ SHR(7,(x)))
#define s1(x) (ROTR(19,(x)) ^ ROTR(61,(x)) ^ SHR(6,(x)))
/* The initial expanding function. The hash function is defined over
an 64-word expanded input array W, where the first 16 are copies of
the input data, and the remaining 64 are defined by
W[ t ] = s1(W[t-2]) + W[t-7] + s0(W[i-15]) + W[i-16]
This implementation generates these values on the fly in a circular
buffer.
*/
#define EXPAND(W,i) \
( W[(i) & 15 ] += (s1(W[((i)-2) & 15]) + W[((i)-7) & 15] + s0(W[((i)-15) & 15])) )
/* The prototype SHA sub-round. The fundamental sub-round is:
T1 = h + S1(e) + Choice(e,f,g) + K[t] + W[t]
T2 = S0(a) + Majority(a,b,c)
a' = T1+T2
b' = a
c' = b
d' = c
e' = d + T1
f' = e
g' = f
h' = g
but this is implemented by unrolling the loop 8 times and renaming
the variables
( h, a, b, c, d, e, f, g ) = ( a, b, c, d, e, f, g, h ) each
iteration. This code is then replicated 8, using the next 8 values
from the W[] array each time */
/* It's crucial that DATA is only used once, as that argument will
* have side effects. */
#define ROUND(a,b,c,d,e,f,g,h,k,data) do { \
uint64_t T = h + S1(e) + Choice(e,f,g) + k + data; \
d += T; \
h = T + S0(a) + Majority(a,b,c); \
} while (0)
void
_nettle_sha512_compress(uint64_t *state, const uint8_t *input, const uint64_t *k)
{
uint64_t data[SHA512_DATA_LENGTH];
uint64_t A, B, C, D, E, F, G, H; /* Local vars */
unsigned i;
uint64_t *d;
for (i = 0; i < SHA512_DATA_LENGTH; i++, input += 8)
{
data[i] = READ_UINT64(input);
}
/* Set up first buffer and local data buffer */
A = state[0];
B = state[1];
C = state[2];
D = state[3];
E = state[4];
F = state[5];
G = state[6];
H = state[7];
/* Heavy mangling */
/* First 16 subrounds that act on the original data */
for (i = 0, d = data; i<16; i+=8, k += 8, d+= 8)
{
ROUND(A, B, C, D, E, F, G, H, k[0], d[0]);
ROUND(H, A, B, C, D, E, F, G, k[1], d[1]);
ROUND(G, H, A, B, C, D, E, F, k[2], d[2]);
ROUND(F, G, H, A, B, C, D, E, k[3], d[3]);
ROUND(E, F, G, H, A, B, C, D, k[4], d[4]);
ROUND(D, E, F, G, H, A, B, C, k[5], d[5]);
ROUND(C, D, E, F, G, H, A, B, k[6], d[6]);
ROUND(B, C, D, E, F, G, H, A, k[7], d[7]);
}
for (; i<80; i += 16, k+= 16)
{
ROUND(A, B, C, D, E, F, G, H, k[ 0], EXPAND(data, 0));
ROUND(H, A, B, C, D, E, F, G, k[ 1], EXPAND(data, 1));
ROUND(G, H, A, B, C, D, E, F, k[ 2], EXPAND(data, 2));
ROUND(F, G, H, A, B, C, D, E, k[ 3], EXPAND(data, 3));
ROUND(E, F, G, H, A, B, C, D, k[ 4], EXPAND(data, 4));
ROUND(D, E, F, G, H, A, B, C, k[ 5], EXPAND(data, 5));
ROUND(C, D, E, F, G, H, A, B, k[ 6], EXPAND(data, 6));
ROUND(B, C, D, E, F, G, H, A, k[ 7], EXPAND(data, 7));
ROUND(A, B, C, D, E, F, G, H, k[ 8], EXPAND(data, 8));
ROUND(H, A, B, C, D, E, F, G, k[ 9], EXPAND(data, 9));
ROUND(G, H, A, B, C, D, E, F, k[10], EXPAND(data, 10));
ROUND(F, G, H, A, B, C, D, E, k[11], EXPAND(data, 11));
ROUND(E, F, G, H, A, B, C, D, k[12], EXPAND(data, 12));
ROUND(D, E, F, G, H, A, B, C, k[13], EXPAND(data, 13));
ROUND(C, D, E, F, G, H, A, B, k[14], EXPAND(data, 14));
ROUND(B, C, D, E, F, G, H, A, k[15], EXPAND(data, 15));
}
/* Update state */
state[0] += A;
state[1] += B;
state[2] += C;
state[3] += D;
state[4] += E;
state[5] += F;
state[6] += G;
state[7] += H;
}
......@@ -39,25 +39,6 @@
#include "macros.h"
/* A block, treated as a sequence of 64-bit words. */
#define SHA512_DATA_LENGTH 16
#define ROTR(n,x) ((x)>>(n) | ((x)<<(64-(n))))
#define SHR(n,x) ((x)>>(n))
/* The SHA512 functions. The Choice function is the same as the SHA1
function f1, and the majority function is the same as the SHA1 f3
function, and the same as for SHA256. */
#define Choice(x,y,z) ( (z) ^ ( (x) & ( (y) ^ (z) ) ) )
#define Majority(x,y,z) ( ((x) & (y)) ^ ((z) & ((x) ^ (y))) )
#define S0(x) (ROTR(28,(x)) ^ ROTR(34,(x)) ^ ROTR(39,(x)))
#define S1(x) (ROTR(14,(x)) ^ ROTR(18,(x)) ^ ROTR(41,(x)))
#define s0(x) (ROTR(1,(x)) ^ ROTR(8,(x)) ^ SHR(7,(x)))
#define s1(x) (ROTR(19,(x)) ^ ROTR(61,(x)) ^ SHR(6,(x)))
/* Generated by the gp script
{
......@@ -123,46 +104,6 @@ K[80] =
0x5FCB6FAB3AD6FAECULL,0x6C44198C4A475817ULL,
};
/* The initial expanding function. The hash function is defined over
an 64-word expanded input array W, where the first 16 are copies of
the input data, and the remaining 64 are defined by
W[ t ] = s1(W[t-2]) + W[t-7] + s0(W[i-15]) + W[i-16]
This implementation generates these values on the fly in a circular
buffer.
*/
#define EXPAND(W,i) \
( W[(i) & 15 ] += (s1(W[((i)-2) & 15]) + W[((i)-7) & 15] + s0(W[((i)-15) & 15])) )
/* The prototype SHA sub-round. The fundamental sub-round is:
T1 = h + S1(e) + Choice(e,f,g) + K[t] + W[t]
T2 = S0(a) + Majority(a,b,c)
a' = T1+T2
b' = a
c' = b
d' = c
e' = d + T1
f' = e
g' = f
h' = g
but this is implemented by unrolling the loop 8 times and renaming
the variables
( h, a, b, c, d, e, f, g ) = ( a, b, c, d, e, f, g, h ) each
iteration. This code is then replicated 8, using the next 8 values
from the W[] array each time */
/* It's crucial that DATA is only used once, as that argument will
* have side effects. */
#define ROUND(a,b,c,d,e,f,g,h,k,data) do { \
uint64_t T = h + S1(e) + Choice(e,f,g) + k + data; \
d += T; \
h = T + S0(a) + Majority(a,b,c); \
} while (0)
void
sha512_init(struct sha512_ctx *ctx)
{
......@@ -192,90 +133,7 @@ sha512_init(struct sha512_ctx *ctx)
ctx->index = 0;
}
/* Perform the SHA transformation. Note that this function destroys
the data area */
static void
sha512_transform(uint64_t *state, uint64_t *data)
{
/* FIXME: XXX Just copied from sha256. */
uint64_t A, B, C, D, E, F, G, H; /* Local vars */
unsigned i;
const uint64_t *k;
uint64_t *d;
/* Set up first buffer and local data buffer */
A = state[0];
B = state[1];
C = state[2];
D = state[3];
E = state[4];
F = state[5];
G = state[6];
H = state[7];
/* Heavy mangling */
/* First 16 subrounds that act on the original data */
for (i = 0, k = K, d = data; i<16; i+=8, k += 8, d+= 8)
{
ROUND(A, B, C, D, E, F, G, H, k[0], d[0]);
ROUND(H, A, B, C, D, E, F, G, k[1], d[1]);
ROUND(G, H, A, B, C, D, E, F, k[2], d[2]);
ROUND(F, G, H, A, B, C, D, E, k[3], d[3]);
ROUND(E, F, G, H, A, B, C, D, k[4], d[4]);
ROUND(D, E, F, G, H, A, B, C, k[5], d[5]);
ROUND(C, D, E, F, G, H, A, B, k[6], d[6]);
ROUND(B, C, D, E, F, G, H, A, k[7], d[7]);
}
for (; i<80; i += 16, k+= 16)
{
ROUND(A, B, C, D, E, F, G, H, k[ 0], EXPAND(data, 0));
ROUND(H, A, B, C, D, E, F, G, k[ 1], EXPAND(data, 1));
ROUND(G, H, A, B, C, D, E, F, k[ 2], EXPAND(data, 2));
ROUND(F, G, H, A, B, C, D, E, k[ 3], EXPAND(data, 3));
ROUND(E, F, G, H, A, B, C, D, k[ 4], EXPAND(data, 4));
ROUND(D, E, F, G, H, A, B, C, k[ 5], EXPAND(data, 5));
ROUND(C, D, E, F, G, H, A, B, k[ 6], EXPAND(data, 6));
ROUND(B, C, D, E, F, G, H, A, k[ 7], EXPAND(data, 7));
ROUND(A, B, C, D, E, F, G, H, k[ 8], EXPAND(data, 8));
ROUND(H, A, B, C, D, E, F, G, k[ 9], EXPAND(data, 9));
ROUND(G, H, A, B, C, D, E, F, k[10], EXPAND(data, 10));
ROUND(F, G, H, A, B, C, D, E, k[11], EXPAND(data, 11));
ROUND(E, F, G, H, A, B, C, D, k[12], EXPAND(data, 12));
ROUND(D, E, F, G, H, A, B, C, k[13], EXPAND(data, 13));
ROUND(C, D, E, F, G, H, A, B, k[14], EXPAND(data, 14));
ROUND(B, C, D, E, F, G, H, A, k[15], EXPAND(data, 15));
}
/* Update state */
state[0] += A;
state[1] += B;
state[2] += C;
state[3] += D;
state[4] += E;
state[5] += F;
state[6] += G;
state[7] += H;
}
static void
sha512_block(struct sha512_ctx *ctx, const uint8_t *block)
{
uint64_t data[SHA512_DATA_LENGTH];
int i;
/* Update block count */
if (!++ctx->count_low)
++ctx->count_high;
/* Endian independent conversion */
for (i = 0; i<SHA512_DATA_LENGTH; i++, block += 8)
data[i] = READ_UINT64(block);
sha512_transform(ctx->state, data);
}
#define SHA512_INCR(ctx) ((ctx)->count_high += !++(ctx)->count_low)
void
sha512_update(struct sha512_ctx *ctx,
......@@ -293,14 +151,19 @@ sha512_update(struct sha512_ctx *ctx,
else
{
memcpy(ctx->block + ctx->index, buffer, left);
sha512_block(ctx, ctx->block);
_nettle_sha512_compress(ctx->state, ctx->block, K);
SHA512_INCR(ctx);
buffer += left;
length -= left;
}
}
while (length >= SHA512_DATA_SIZE)
{
sha512_block(ctx, buffer);
_nettle_sha512_compress(ctx->state, buffer, K);
SHA512_INCR(ctx);
buffer += SHA512_DATA_SIZE;
length -= SHA512_DATA_SIZE;
}
......@@ -316,9 +179,9 @@ sha512_update(struct sha512_ctx *ctx,
static void
sha512_final(struct sha512_ctx *ctx)
{
uint64_t data[SHA512_DATA_LENGTH];
uint64_t bitcount_high;
uint64_t bitcount_low;
int i;
int words;
i = ctx->index;
......@@ -328,32 +191,29 @@ sha512_final(struct sha512_ctx *ctx)
assert(i < SHA512_DATA_SIZE);
ctx->block[i++] = 0x80;
/* Fill rest of word */
for( ; i & 7; i++)
ctx->block[i] = 0;
/* i is now a multiple of the word size 8 */
words = i >> 3;
for (i = 0; i < words; i++)
data[i] = READ_UINT64(ctx->block + 8*i);
if (words > (SHA512_DATA_LENGTH-2))
if (i > (SHA512_DATA_SIZE-16))
{ /* No room for length in this block. Process it and
* pad with another one */
for (i = words ; i < SHA512_DATA_LENGTH; i++)
data[i] = 0;
sha512_transform(ctx->state, data);
for (i = 0; i < (SHA512_DATA_LENGTH-2); i++)
data[i] = 0;
memset(ctx->block + i, 0, SHA512_DATA_SIZE - i);
_nettle_sha512_compress(ctx->state, ctx->block, K);
i = 0;
}
else
for (i = words ; i < SHA512_DATA_LENGTH - 2; i++)
data[i] = 0;
if (i < (SHA512_DATA_SIZE - 16))
memset(ctx->block + i, 0, (SHA512_DATA_SIZE - 16) - i);
/* There are 1024 = 2^10 bits in one block */
data[SHA512_DATA_LENGTH-2] = (ctx->count_high << 10) | (ctx->count_low >> 54);
data[SHA512_DATA_LENGTH-1] = (ctx->count_low << 10) | (ctx->index << 3);
sha512_transform(ctx->state, data);
bitcount_high = (ctx->count_high << 10) | (ctx->count_low >> 54);
bitcount_low = (ctx->count_low << 10) | (ctx->index << 3);
/* This is slightly inefficient, as the numbers are converted to
big-endian format, and will be converted back by the compression
function. It's probably not worth the effort to fix this. */
WRITE_UINT64(ctx->block + (SHA512_DATA_SIZE - 16), bitcount_high);
WRITE_UINT64(ctx->block + (SHA512_DATA_SIZE - 8), bitcount_low);
_nettle_sha512_compress(ctx->state, ctx->block, K);
}
void
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment