arctwo.c 6.51 KB
Newer Older
Simon Josefsson's avatar
Simon Josefsson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
/* arctwo.c
 *
 * The cipher described in rfc2268; aka Ron's Cipher 2.
 */
   
/* nettle, low-level cryptographics library
 *
 * Copyright (C) 2004 Simon Josefsson
 * Copyright (C) 2003 Nikos Mavroyanopoulos
 * Copyright (C) 2004 Free Software Foundation, Inc.
 * Copyright (C) 2004 Niels Mller
 *
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 *
 * The nettle library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with the nettle library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA.
 */

/* This implementation was written by Nikos Mavroyanopoulos for GNUTLS
 * as a Libgcrypt module (gnutls/lib/x509/rc2.c) and later adapted for
 * direct use by Libgcrypt by Werner Koch and later adapted for direct
 * use by Nettle by Simon Josefsson and Niels Mller.
 *
 * The implementation here is based on Peter Gutmann's RRC.2 paper and
 * RFC 2268.
 */

#if HAVE_CONFIG_H
# include "config.h"
#endif

#include <assert.h>

#include "arctwo.h"

#include "macros.h"

static const uint8_t arctwo_sbox[] = {
  0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed,
  0x28, 0xe9, 0xfd, 0x79, 0x4a, 0xa0, 0xd8, 0x9d,
  0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e,
  0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2,
  0x17, 0x9a, 0x59, 0xf5, 0x87, 0xb3, 0x4f, 0x13,
  0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32,
  0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b,
  0xf0, 0x95, 0x21, 0x22, 0x5c, 0x6b, 0x4e, 0x82,
  0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c,
  0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc,
  0x12, 0x75, 0xca, 0x1f, 0x3b, 0xbe, 0xe4, 0xd1,
  0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26,
  0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57,
  0x27, 0xf2, 0x1d, 0x9b, 0xbc, 0x94, 0x43, 0x03,
  0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7,
  0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7,
  0x08, 0xe8, 0xea, 0xde, 0x80, 0x52, 0xee, 0xf7,
  0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a,
  0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74,
  0x4b, 0x9f, 0xd0, 0x5e, 0x04, 0x18, 0xa4, 0xec,
  0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc,
  0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39,
  0x99, 0x7c, 0x3a, 0x85, 0x23, 0xb8, 0xb4, 0x7a,
  0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31,
  0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae,
  0x05, 0xdf, 0x29, 0x10, 0x67, 0x6c, 0xba, 0xc9,
  0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c,
  0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9,
  0x0d, 0x38, 0x34, 0x1b, 0xab, 0x33, 0xff, 0xb0,
  0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e,
  0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77,
  0x0a, 0xa6, 0x20, 0x68, 0xfe, 0x7f, 0xc1, 0xad
};

#define rotl16(x,n) (((x) << ((uint16_t)(n))) | ((x) >> (16 - (uint16_t)(n))))
#define rotr16(x,n) (((x) >> ((uint16_t)(n))) | ((x) << (16 - (uint16_t)(n))))

void
arctwo_encrypt (struct arctwo_ctx *ctx,
		unsigned length, uint8_t *dst, const uint8_t *src)
{
  FOR_BLOCKS (length, dst, src, ARCTWO_BLOCK_SIZE)
  {
    register unsigned i;
    uint16_t w0, w1, w2, w3;

    w0 = LE_READ_UINT16 (&src[0]);
    w1 = LE_READ_UINT16 (&src[2]);
    w2 = LE_READ_UINT16 (&src[4]);
    w3 = LE_READ_UINT16 (&src[6]);

    for (i = 0; i < 16; i++)
      {
	register unsigned j = i * 4;
	/* For some reason I cannot combine those steps. */
	w0 += (w1 & ~w3) + (w2 & w3) + ctx->S[j];
	w0 = rotl16 (w0, 1);

	w1 += (w2 & ~w0) + (w3 & w0) + ctx->S[j + 1];
	w1 = rotl16 (w1, 2);

	w2 += (w3 & ~w1) + (w0 & w1) + ctx->S[j + 2];
	w2 = rotl16 (w2, 3);

	w3 += (w0 & ~w2) + (w1 & w2) + ctx->S[j + 3];
	w3 = rotl16 (w3, 5);

	if (i == 4 || i == 10)
	  {
	    w0 += ctx->S[w3 & 63];
	    w1 += ctx->S[w0 & 63];
	    w2 += ctx->S[w1 & 63];
	    w3 += ctx->S[w2 & 63];
	  }
      }
    LE_WRITE_UINT16 (&dst[0], w0);
    LE_WRITE_UINT16 (&dst[2], w1);
    LE_WRITE_UINT16 (&dst[4], w2);
    LE_WRITE_UINT16 (&dst[6], w3);
  }
}

void
arctwo_decrypt (struct arctwo_ctx *ctx,
		unsigned length, uint8_t *dst, const uint8_t *src)
{
  FOR_BLOCKS (length, dst, src, ARCTWO_BLOCK_SIZE)
  {
    register unsigned i;
    uint16_t w0, w1, w2, w3;

    w0 = LE_READ_UINT16 (&src[0]);
    w1 = LE_READ_UINT16 (&src[2]);
    w2 = LE_READ_UINT16 (&src[4]);
    w3 = LE_READ_UINT16 (&src[6]);

    for (i = 16; i-- > 0; )
      {
	register unsigned j = i * 4;

	w3 = rotr16 (w3, 5);
	w3 -= (w0 & ~w2) + (w1 & w2) + ctx->S[j + 3];

	w2 = rotr16 (w2, 3);
	w2 -= (w3 & ~w1) + (w0 & w1) + ctx->S[j + 2];

	w1 = rotr16 (w1, 2);
	w1 -= (w2 & ~w0) + (w3 & w0) + ctx->S[j + 1];

	w0 = rotr16 (w0, 1);
	w0 -= (w1 & ~w3) + (w2 & w3) + ctx->S[j];

	if (i == 5 || i == 11)
	  {
	    w3 = w3 - ctx->S[w2 & 63];
	    w2 = w2 - ctx->S[w1 & 63];
	    w1 = w1 - ctx->S[w0 & 63];
	    w0 = w0 - ctx->S[w3 & 63];
	  }

      }
    LE_WRITE_UINT16 (&dst[0], w0);
    LE_WRITE_UINT16 (&dst[2], w1);
    LE_WRITE_UINT16 (&dst[4], w2);
    LE_WRITE_UINT16 (&dst[6], w3);
  }
}

void
arctwo_set_key_ebk (struct arctwo_ctx *ctx,
		    unsigned length, const uint8_t *key, unsigned ebk)
{
  unsigned i;
  /* Expanded key, treated as octets */
  uint8_t S[128];
  uint8_t x;

  assert (length >= ARCTWO_MIN_KEY_SIZE);
  assert (length <= ARCTWO_MAX_KEY_SIZE);
  assert (ebk <= 1024);

  for (i = 0; i < length; i++)
    S[i] = key[i];

  /* Phase 1: Expand input key to 128 bytes */
  for (i = length; i < ARCTWO_MAX_KEY_SIZE; i++)
    S[i] = arctwo_sbox[(S[i - length] + S[i - 1]) & 255];

  S[0] = arctwo_sbox[S[0]];

  /* Reduce effective key size to ebk bits, if requested by caller. */
  if (ebk > 0 && ebk < 1024)
    {
      int len = (ebk + 7) >> 3;
      i = 128 - len;
      x = arctwo_sbox[S[i] & (255 >> (7 & -ebk))];
      S[i] = x;

      while (i--)
	{
	  x = arctwo_sbox[x ^ S[i + len]];
	  S[i] = x;
	}
    }

  /* Make the expanded key endian independent. */
  for (i = 0; i < 64; i++)
    ctx->S[i] = LE_READ_UINT16(S + i * 2);
}

void
arctwo_set_key (struct arctwo_ctx *ctx, unsigned length, const uint8_t *key)
{
  arctwo_set_key_ebk (ctx, length, key, 8 * length);
}

void
arctwo_set_key_gutmann (struct arctwo_ctx *ctx,
			unsigned length, const uint8_t *key)
{
  arctwo_set_key_ebk (ctx, length, key, 0);
}