diff --git a/src/modules/_Crypto/include/idea.h b/src/modules/_Crypto/include/idea.h
new file mode 100644
index 0000000000000000000000000000000000000000..87e6b12524d57926e469b8a061561237bf6bb967
--- /dev/null
+++ b/src/modules/_Crypto/include/idea.h
@@ -0,0 +1,22 @@
+/* idea.h */
+
+#ifndef IDEA_H_INCLUDED
+#define IDEA_H_INCLUDED
+
+#define IDEA_KEYSIZE 16
+#define IDEA_BLOCKSIZE 8
+
+#define IDEA_ROUNDS 8
+#define IDEA_KEYLEN (6*IDEA_ROUNDS+4)
+
+void idea_expand(unsigned INT16 *ctx,
+		 const unsigned INT8 *key);
+
+void idea_invert(unsigned INT16 *d,
+		  const unsigned INT16 *e);
+
+void idea_crypt(unsigned INT8 *dest,
+		const unsigned INT16 *key,
+		const unsigned INT8 *src);
+
+#endif /* IDEA_H_INCLUDED */
diff --git a/src/modules/_Crypto/include/sha.h b/src/modules/_Crypto/include/sha.h
new file mode 100644
index 0000000000000000000000000000000000000000..16a236c1068e46b8ee8bc4f96190350031fde9c2
--- /dev/null
+++ b/src/modules/_Crypto/include/sha.h
@@ -0,0 +1,24 @@
+/* sha.h
+ *
+ */
+
+/* The SHA block size and message digest sizes, in bytes */
+
+#define SHA_DATASIZE    64
+#define SHA_DATALEN     16
+#define SHA_DIGESTSIZE  20
+#define SHA_DIGESTLEN    5
+/* The structure for storing SHA info */
+
+struct sha_ctx {
+  unsigned INT32 digest[SHA_DIGESTLEN];  /* Message digest */
+  unsigned INT32 count_l, count_h;       /* 64-bit block count */
+  unsigned INT8 block[SHA_DATASIZE];     /* SHA data buffer */
+  int index;                             /* index into buffer */
+};
+
+void sha_init(struct sha_ctx *ctx);
+void sha_update(struct sha_ctx *ctx, unsigned INT8 *buffer, INT32 len);
+void sha_final(struct sha_ctx *ctx);
+void sha_digest(struct sha_ctx *ctx, INT8 *s);
+void sha_copy(struct sha_ctx *dest, struct sha_ctx *src);
diff --git a/src/modules/_Crypto/lib/idea.c b/src/modules/_Crypto/lib/idea.c
new file mode 100644
index 0000000000000000000000000000000000000000..9612f4b07bd98d81566a6cb8d23225d9cae5434a
--- /dev/null
+++ b/src/modules/_Crypto/lib/idea.c
@@ -0,0 +1,263 @@
+/* The basic IDEA transformation
+ *
+ * This implementation is taken from pgp, see note below.
+ *
+ * Only primitive operations are done here, chaining modes etc
+ * are implemented in a higher level program.
+ *
+ **********************************************************************
+ *
+ *    idea.c - C source code for IDEA block cipher.
+ *      IDEA (International Data Encryption Algorithm), formerly known as 
+ *      IPES (Improved Proposed Encryption Standard).
+ *      Algorithm developed by Xuejia Lai and James L. Massey, of ETH Zurich.
+ *      This implementation modified and derived from original C code 
+ *      developed by Xuejia Lai.  
+ *      Zero-based indexing added, names changed from IPES to IDEA.
+ *      CFB functions added.  Random number routines added.
+ *
+ *      Extensively optimized and restructured by Colin Plumb.
+ *
+ ***********************************************************************
+ *
+ * Some changes including endianness cleanup done by Niels M�ller.
+ *
+ */
+
+#include "types.h"
+#include "idea.h"
+
+/*-------------------------------------------------------------*/
+
+#define low16(x)  ((x) & 0xffff)
+
+/*
+ *	Multiplication, modulo (2**16)+1
+ * Note that this code is structured on the assumption that
+ * untaken branches are cheaper than taken branches, and the
+ * compiler doesn't schedule branches.
+ */
+#ifdef SMALL_CACHE
+const static unsigned INT16
+mul(unsigned INT16 a, unsigned INT16 b)
+{
+  register unsigned INT32 p;
+
+  p = (unsigned INT32)a * b;
+  if (p)
+    {
+      b = low16(p);
+      a = p>>16;
+      return (b - a) + (b < a);
+    }
+  else if (a)
+    {
+      return 1-b;
+    }
+  else
+    {
+      return 1-a;
+    }
+} /* mul */
+#endif /* SMALL_CACHE */
+
+/*
+ * Compute the multiplicative inverse of x, modulo 65537, using Euclid's
+ * algorithm. It is unrolled twice to avoid swapping the registers each
+ * iteration, and some subtracts of t have been changed to adds.
+ */
+static const unsigned INT16
+inv(unsigned INT16 x)     
+{
+  unsigned INT16 t0, t1;
+  unsigned INT16 q, y;
+
+  if (x <= 1)
+    return x;	/* 0 and 1 are self-inverse */
+  t1 = 0x10001L / x;	/* Since x >= 2, this fits into 16 bits */
+  y = 0x10001L % x;
+  if (y == 1)
+    return low16(1-t1);
+  t0 = 1;
+  do
+    {
+      q = x / y;
+      x = x % y;
+      t0 += q * t1;
+      if (x == 1)
+	return t0;
+      q = y / x;
+      y = y % x;
+      t1 += q * t0;
+    }
+  while (y != 1);
+  return low16(1-t1);
+} /* inv */
+
+/*
+ * Expand a 128-bit user key to a working encryption key ctx
+ */
+void
+idea_expand(unsigned INT16 *ctx,
+	    const unsigned INT8 *userkey)
+{
+  int i,j;
+  
+  for (j=0; j<8; j++) {
+    ctx[j] = (userkey[0]<<8) + userkey[1];
+    userkey += 2;
+  }
+  for (i=0; j < IDEA_KEYLEN; j++) {
+    i++;
+    ctx[i+7] = ctx[i & 7] << 9 | ctx[i+1 & 7] >> 7;
+    ctx += i & 8;
+    i &= 7;
+  }
+} /* idea_expand */
+
+/*
+ * Compute IDEA decryption key DK from an expanded IDEA encryption key EK
+ * Note that the input and output may be the same.  Thus, the key is
+ * inverted into an internal buffer, and then copied to the output.
+ */
+void
+idea_invert(unsigned INT16 *d,
+	    const unsigned INT16 *e)
+{
+  int i;
+  unsigned INT16 t1, t2, t3;
+  unsigned INT16 temp[IDEA_KEYLEN];
+  unsigned INT16 *p = temp + IDEA_KEYLEN;
+
+  t1 = inv(*e++);
+  t2 = -*e++;
+  t3 = -*e++;
+  *--p = inv(*e++);
+  *--p = t3;
+  *--p = t2;
+  *--p = t1;
+
+  for (i = 0; i < IDEA_ROUNDS-1; i++) {
+    t1 = *e++;
+    *--p = *e++;
+    *--p = t1;
+
+    t1 = inv(*e++);
+    t2 = -*e++;
+    t3 = -*e++;
+    *--p = inv(*e++);
+    *--p = t2;
+    *--p = t3;
+    *--p = t1;
+  }
+  t1 = *e++;
+  *--p = *e++;
+  *--p = t1;
+
+  t1 = inv(*e++);
+  t2 = -*e++;
+  t3 = -*e++;
+  *--p = inv(*e++);
+  *--p = t3;
+  *--p = t2;
+  *--p = t1;
+  /* Copy and destroy temp copy */
+  memcpy(d, temp, sizeof(temp));
+  memset(temp, 0, sizeof(temp));
+} /* idea_invert */
+
+/*
+ * MUL(x,y) computes x = x*y, modulo 0x10001.  Requires two temps, 
+ * t16 and t32.  x is modified, and must me a side-effect-free lvalue.
+ * y may be anything, but unlike x, must be strictly 16 bits even if
+ * low16() is #defined.
+ * All of these are equivalent - see which is faster on your machine
+ */
+#ifdef SMALL_CACHE
+#define MUL(x,y) (x = mul(low16(x),y))
+#else /* !SMALL_CACHE */
+#ifdef AVOID_JUMPS
+#define MUL(x,y) (x = low16(x-1), t16 = low16((y)-1), \
+		t32 = (unsigned INT32)x*t16 + x + t16 + 1, x = low16(t32), \
+		t16 = t32>>16, x = (x-t16) + (x<t16) )
+#else /* !AVOID_JUMPS (default) */
+#define MUL(x,y) \
+	((t16 = (y)) ? \
+		(x=low16(x)) ? \
+			t32 = (unsigned INT32)x*t16, \
+			x = low16(t32), \
+			t16 = t32>>16, \
+			x = (x-t16)+(x<t16) \
+		: \
+			(x = 1-t16) \
+	: \
+		(x = 1-x))
+#endif
+#endif
+
+/* Endian independent conversions */
+#define char2word(dest, p) \
+     do { \
+	    (dest) = *(p)++ << 8; (dest) |= *(p)++; \
+	} while(0)
+     
+#define word2char(src, p) \
+     do { \
+	    *(p)++ = (src) >> 8; *(p)++ = (src) & 0xff; \
+	} while(0)
+     
+/*	IDEA encryption/decryption algorithm */
+/* Note that in and out can be the same buffer */
+void
+idea_crypt(unsigned INT8 *dest,
+	   const unsigned INT16 *key,
+	   const unsigned INT8 *src)
+{
+  register unsigned INT16 x1, x2, x3, x4, s2, s3;
+  int i;
+  
+  /* Setup */
+    
+  char2word(x1, src); char2word(x2, src);
+  char2word(x3, src); char2word(x4, src);
+  
+  /* Encrypt */
+  {
+#ifndef SMALL_CACHE
+    register unsigned INT16 t16;	/* Temporaries needed by MUL macro */
+    register unsigned INT32 t32;
+#endif
+    int r = IDEA_ROUNDS;
+    do
+      {
+	MUL(x1,*key++);
+	x2 += *key++;
+	x3 += *key++;
+	MUL(x4, *key++);
+
+	s3 = x3;
+	x3 ^= x1;
+	MUL(x3, *key++);
+	s2 = x2;
+	x2 ^= x4;
+	x2 += x3;
+	MUL(x2, *key++);
+	x3 += x2;
+
+	x1 ^= x2;  x4 ^= x3;
+
+	x2 ^= s3;  x3 ^= s2;
+      }
+    while (--r);
+    MUL(x1, *key++);
+    x3 += *key++;
+    x2 += *key++;
+    MUL(x4, *key);
+  }
+  word2char(x1, dest); word2char(x3, dest);
+  word2char(x2, dest); word2char(x4, dest);
+} /* idea_crypt */
+
+/*-------------------------------------------------------------*/
+
+
diff --git a/src/modules/_Crypto/lib/sha.c b/src/modules/_Crypto/lib/sha.c
new file mode 100644
index 0000000000000000000000000000000000000000..f1c295dff30c8232fec68a57e3f7425bf69ec39b
--- /dev/null
+++ b/src/modules/_Crypto/lib/sha.c
@@ -0,0 +1,356 @@
+/* sha.c - Implementation of the Secure Hash Algorithm
+ *
+ * Copyright (C) 1995, A.M. Kuchling
+ *
+ * Distribute and use freely; there are no restrictions on further 
+ * dissemination and usage except those imposed by the laws of your 
+ * country of residence.
+ *
+ * Adapted to pike and some cleanup by Niels M�ller.
+ */
+
+/* SHA: NIST's Secure Hash Algorithm */
+
+/* Based on SHA code originally posted to sci.crypt by Peter Gutmann
+   in message <30ajo5$oe8@ccu2.auckland.ac.nz>.
+   Modified to test for endianness on creation of SHA objects by AMK.
+   Also, the original specification of SHA was found to have a weakness
+   by NSA/NIST.  This code implements the fixed version of SHA.
+*/
+
+/* Here's the first paragraph of Peter Gutmann's posting:
+   
+The following is my SHA (FIPS 180) code updated to allow use of the "fixed"
+SHA, thanks to Jim Gillogly and an anonymous contributor for the information on
+what's changed in the new version.  The fix is a simple change which involves
+adding a single rotate in the initial expansion function.  It is unknown
+whether this is an optimal solution to the problem which was discovered in the
+SHA or whether it's simply a bandaid which fixes the problem with a minimum of
+effort (for example the reengineering of a great many Capstone chips).
+*/
+
+#include "types.h"
+#include "port.h"
+#include "sha.h"
+
+void sha_copy(struct sha_ctx *dest, struct sha_ctx *src)
+{
+  int i;
+
+  dest->count_l=src->count_l;
+  dest->count_h=src->count_h;
+  for(i=0; i<SHA_DIGESTLEN; i++) dest->digest[i]=src->digest[i];
+}
+
+
+/* The SHA f()-functions.  The f1 and f3 functions can be optimized to
+   save one boolean operation each - thanks to Rich Schroeppel,
+   rcs@cs.arizona.edu for discovering this */
+
+/*#define f1(x,y,z) ( ( x & y ) | ( ~x & z ) )          // Rounds  0-19 */
+#define f1(x,y,z)   ( z ^ ( x & ( y ^ z ) ) )           /* Rounds  0-19 */
+#define f2(x,y,z)   ( x ^ y ^ z )                       /* Rounds 20-39 */
+/*#define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) )   // Rounds 40-59 */
+#define f3(x,y,z)   ( ( x & y ) | ( z & ( x | y ) ) )   /* Rounds 40-59 */
+#define f4(x,y,z)   ( x ^ y ^ z )                       /* Rounds 60-79 */
+
+/* The SHA Mysterious Constants */
+
+#define K1  0x5A827999L                                 /* Rounds  0-19 */
+#define K2  0x6ED9EBA1L                                 /* Rounds 20-39 */
+#define K3  0x8F1BBCDCL                                 /* Rounds 40-59 */
+#define K4  0xCA62C1D6L                                 /* Rounds 60-79 */
+
+/* SHA initial values */
+
+#define h0init  0x67452301L
+#define h1init  0xEFCDAB89L
+#define h2init  0x98BADCFEL
+#define h3init  0x10325476L
+#define h4init  0xC3D2E1F0L
+
+/* 32-bit rotate left - kludged with shifts */
+
+#define ROTL(n,X)  ( ( (X) << (n) ) | ( (X) >> ( 32 - (n) ) ) )
+
+/* The initial expanding function.  The hash function is defined over an
+   80-word expanded input array W, where the first 16 are copies of the input
+   data, and the remaining 64 are defined by
+
+        W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]
+
+   This implementation generates these values on the fly in a circular
+   buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
+   optimization.
+
+   The updated SHA changes the expanding function by adding a rotate of 1
+   bit.  Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
+   for this information */
+
+#define expand(W,i) ( W[ i & 15 ] = \
+		      ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \
+				 W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) )
+
+
+/* The prototype SHA sub-round.  The fundamental sub-round is:
+
+        a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
+        b' = a;
+        c' = ROTL( 30, b );
+        d' = c;
+        e' = d;
+
+   but this is implemented by unrolling the loop 5 times and renaming the
+   variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
+   This code is then replicated 20 times for each of the 4 functions, using
+   the next 20 values from the W[] array each time */
+
+#define subRound(a, b, c, d, e, f, k, data) \
+    ( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )
+
+/* Initialize the SHA values */
+
+void sha_init(struct sha_ctx *ctx)
+{
+  /* Set the h-vars to their initial values */
+  ctx->digest[ 0 ] = h0init;
+  ctx->digest[ 1 ] = h1init;
+  ctx->digest[ 2 ] = h2init;
+  ctx->digest[ 3 ] = h3init;
+  ctx->digest[ 4 ] = h4init;
+
+  /* Initialize bit count */
+  ctx->count_l = ctx->count_h = 0;
+  
+  /* Initialize buffer */
+  ctx->index = 0;
+}
+
+/* Perform the SHA transformation.  Note that this code, like MD5, seems to
+   break some optimizing compilers due to the complexity of the expressions
+   and the size of the basic block.  It may be necessary to split it into
+   sections, e.g. based on the four subrounds
+
+   Note that this function destroys the data area */
+
+static void sha_transform(struct sha_ctx *ctx, unsigned INT32 *data )
+{
+  unsigned INT32 A, B, C, D, E;     /* Local vars */
+
+  /* Set up first buffer and local data buffer */
+  A = ctx->digest[0];
+  B = ctx->digest[1];
+  C = ctx->digest[2];
+  D = ctx->digest[3];
+  E = ctx->digest[4];
+
+  /* Heavy mangling, in 4 sub-rounds of 20 interations each. */
+  subRound( A, B, C, D, E, f1, K1, data[ 0] );
+  subRound( E, A, B, C, D, f1, K1, data[ 1] );
+  subRound( D, E, A, B, C, f1, K1, data[ 2] );
+  subRound( C, D, E, A, B, f1, K1, data[ 3] );
+  subRound( B, C, D, E, A, f1, K1, data[ 4] );
+  subRound( A, B, C, D, E, f1, K1, data[ 5] );
+  subRound( E, A, B, C, D, f1, K1, data[ 6] );
+  subRound( D, E, A, B, C, f1, K1, data[ 7] );
+  subRound( C, D, E, A, B, f1, K1, data[ 8] );
+  subRound( B, C, D, E, A, f1, K1, data[ 9] );
+  subRound( A, B, C, D, E, f1, K1, data[10] );
+  subRound( E, A, B, C, D, f1, K1, data[11] );
+  subRound( D, E, A, B, C, f1, K1, data[12] );
+  subRound( C, D, E, A, B, f1, K1, data[13] );
+  subRound( B, C, D, E, A, f1, K1, data[14] );
+  subRound( A, B, C, D, E, f1, K1, data[15] );
+  subRound( E, A, B, C, D, f1, K1, expand( data, 16 ) );
+  subRound( D, E, A, B, C, f1, K1, expand( data, 17 ) );
+  subRound( C, D, E, A, B, f1, K1, expand( data, 18 ) );
+  subRound( B, C, D, E, A, f1, K1, expand( data, 19 ) );
+
+  subRound( A, B, C, D, E, f2, K2, expand( data, 20 ) );
+  subRound( E, A, B, C, D, f2, K2, expand( data, 21 ) );
+  subRound( D, E, A, B, C, f2, K2, expand( data, 22 ) );
+  subRound( C, D, E, A, B, f2, K2, expand( data, 23 ) );
+  subRound( B, C, D, E, A, f2, K2, expand( data, 24 ) );
+  subRound( A, B, C, D, E, f2, K2, expand( data, 25 ) );
+  subRound( E, A, B, C, D, f2, K2, expand( data, 26 ) );
+  subRound( D, E, A, B, C, f2, K2, expand( data, 27 ) );
+  subRound( C, D, E, A, B, f2, K2, expand( data, 28 ) );
+  subRound( B, C, D, E, A, f2, K2, expand( data, 29 ) );
+  subRound( A, B, C, D, E, f2, K2, expand( data, 30 ) );
+  subRound( E, A, B, C, D, f2, K2, expand( data, 31 ) );
+  subRound( D, E, A, B, C, f2, K2, expand( data, 32 ) );
+  subRound( C, D, E, A, B, f2, K2, expand( data, 33 ) );
+  subRound( B, C, D, E, A, f2, K2, expand( data, 34 ) );
+  subRound( A, B, C, D, E, f2, K2, expand( data, 35 ) );
+  subRound( E, A, B, C, D, f2, K2, expand( data, 36 ) );
+  subRound( D, E, A, B, C, f2, K2, expand( data, 37 ) );
+  subRound( C, D, E, A, B, f2, K2, expand( data, 38 ) );
+  subRound( B, C, D, E, A, f2, K2, expand( data, 39 ) );
+
+  subRound( A, B, C, D, E, f3, K3, expand( data, 40 ) );
+  subRound( E, A, B, C, D, f3, K3, expand( data, 41 ) );
+  subRound( D, E, A, B, C, f3, K3, expand( data, 42 ) );
+  subRound( C, D, E, A, B, f3, K3, expand( data, 43 ) );
+  subRound( B, C, D, E, A, f3, K3, expand( data, 44 ) );
+  subRound( A, B, C, D, E, f3, K3, expand( data, 45 ) );
+  subRound( E, A, B, C, D, f3, K3, expand( data, 46 ) );
+  subRound( D, E, A, B, C, f3, K3, expand( data, 47 ) );
+  subRound( C, D, E, A, B, f3, K3, expand( data, 48 ) );
+  subRound( B, C, D, E, A, f3, K3, expand( data, 49 ) );
+  subRound( A, B, C, D, E, f3, K3, expand( data, 50 ) );
+  subRound( E, A, B, C, D, f3, K3, expand( data, 51 ) );
+  subRound( D, E, A, B, C, f3, K3, expand( data, 52 ) );
+  subRound( C, D, E, A, B, f3, K3, expand( data, 53 ) );
+  subRound( B, C, D, E, A, f3, K3, expand( data, 54 ) );
+  subRound( A, B, C, D, E, f3, K3, expand( data, 55 ) );
+  subRound( E, A, B, C, D, f3, K3, expand( data, 56 ) );
+  subRound( D, E, A, B, C, f3, K3, expand( data, 57 ) );
+  subRound( C, D, E, A, B, f3, K3, expand( data, 58 ) );
+  subRound( B, C, D, E, A, f3, K3, expand( data, 59 ) );
+
+  subRound( A, B, C, D, E, f4, K4, expand( data, 60 ) );
+  subRound( E, A, B, C, D, f4, K4, expand( data, 61 ) );
+  subRound( D, E, A, B, C, f4, K4, expand( data, 62 ) );
+  subRound( C, D, E, A, B, f4, K4, expand( data, 63 ) );
+  subRound( B, C, D, E, A, f4, K4, expand( data, 64 ) );
+  subRound( A, B, C, D, E, f4, K4, expand( data, 65 ) );
+  subRound( E, A, B, C, D, f4, K4, expand( data, 66 ) );
+  subRound( D, E, A, B, C, f4, K4, expand( data, 67 ) );
+  subRound( C, D, E, A, B, f4, K4, expand( data, 68 ) );
+  subRound( B, C, D, E, A, f4, K4, expand( data, 69 ) );
+  subRound( A, B, C, D, E, f4, K4, expand( data, 70 ) );
+  subRound( E, A, B, C, D, f4, K4, expand( data, 71 ) );
+  subRound( D, E, A, B, C, f4, K4, expand( data, 72 ) );
+  subRound( C, D, E, A, B, f4, K4, expand( data, 73 ) );
+  subRound( B, C, D, E, A, f4, K4, expand( data, 74 ) );
+  subRound( A, B, C, D, E, f4, K4, expand( data, 75 ) );
+  subRound( E, A, B, C, D, f4, K4, expand( data, 76 ) );
+  subRound( D, E, A, B, C, f4, K4, expand( data, 77 ) );
+  subRound( C, D, E, A, B, f4, K4, expand( data, 78 ) );
+  subRound( B, C, D, E, A, f4, K4, expand( data, 79 ) );
+
+  /* Build message digest */
+  ctx->digest[0] += A;
+  ctx->digest[1] += B;
+  ctx->digest[2] += C;
+  ctx->digest[3] += D;
+  ctx->digest[4] += E;
+}
+
+#if 1
+#define STRING2INT(s) ((((((EXTRACT_UCHAR(s) << 8)    \
+			 | EXTRACT_UCHAR(s+1)) << 8)  \
+			 | EXTRACT_UCHAR(s+2)) << 8)  \
+			 | EXTRACT_UCHAR(s+3))
+#else
+
+unsigned INT32 STRING2INT(unsigned INT8 *s)
+{
+  unsigned INT32 r;
+  int i;
+  
+  for (i = 0, r = 0; i < 4; i++, s++)
+    r = (r << 8) | *s;
+  return r;
+}
+#endif
+
+static void sha_block(struct sha_ctx *ctx, unsigned INT8 *block)
+{
+  unsigned INT32 data[SHA_DATALEN];
+  int i;
+  
+  /* Update block count */
+  if (!++ctx->count_l)
+    ++ctx->count_h;
+
+  /* Endian independent conversion */
+  for (i = 0; i<16; i++, block += 4)
+    data[i] = STRING2INT(block);
+
+  sha_transform(ctx, data);
+}
+
+void sha_update(struct sha_ctx *ctx, unsigned INT8 *buffer, INT32 len)
+{
+  if (ctx->index)
+    { /* Try to fill partial block */
+      int left = SHA_DATASIZE - ctx->index;
+      if (len < left)
+	{
+	  memcpy(ctx->block + ctx->index, buffer, len);
+	  ctx->index += len;
+	  return; /* Finished */
+	}
+      else
+	{
+	  memcpy(ctx->block + ctx->index, buffer, left);
+	  sha_block(ctx, ctx->block);
+	  buffer += left;
+	  len -= left;
+	}
+    }
+  while (len >= SHA_DATASIZE)
+    {
+      sha_block(ctx, buffer);
+      buffer += SHA_DATASIZE;
+      len -= SHA_DATASIZE;
+    }
+  if (ctx->index = len)     /* This assignment is intended */
+    /* Buffer leftovers */
+    memcpy(ctx->block, buffer, len);
+}
+	  
+/* Final wrapup - pad to SHA_DATASIZE-byte boundary with the bit pattern
+   1 0* (64-bit count of bits processed, MSB-first) */
+
+void sha_final(struct sha_ctx *ctx)
+{
+  unsigned INT32 data[SHA_DATALEN];
+  int i;
+  int words;
+  
+  i = ctx->index;
+  /* Set the first char of padding to 0x80.  This is safe since there is
+     always at least one byte free */
+  ctx->block[i++] = 0x80;
+
+  /* Fill rest of word */
+  for( ; i & 3; i++)
+    ctx->block[i] = 0;
+
+  /* i is now a multiple of the word size 4 */
+  words = i >> 2;
+  for (i = 0; i < words; i++)
+    data[i] = STRING2INT(ctx->block + 4*i);
+  
+  if (words > (SHA_DATALEN-2))
+    { /* No room for length in this block. Process it and
+       * pad with another one */
+      for (i = words ; i < SHA_DATALEN; i++)
+	data[i] = 0;
+      sha_transform(ctx, data);
+      for (i = 0; i < (SHA_DATALEN-2); i++)
+	data[i] = 0;
+    }
+  else
+    for (i = words ; i < SHA_DATALEN - 2; i++)
+      data[i] = 0;
+  /* Theres 512 = 2^9 bits in one block */
+  data[SHA_DATALEN-2] = ctx->count_h << 9;
+  data[SHA_DATALEN-1] = ctx->count_l << 9 | ctx->index << 3;
+  sha_transform(ctx, data);
+}
+
+void sha_digest(struct sha_ctx *ctx, INT8 *s)
+{
+  int i;
+
+  for (i = 0; i < SHA_DIGESTLEN; i++)
+    {
+      *s++ =         ctx->digest[i] >> 24;
+      *s++ = 0xff & (ctx->digest[i] >> 16);
+      *s++ = 0xff & (ctx->digest[i] >> 8);
+      *s++ = 0xff &  ctx->digest[i];
+    }
+}