/* || This file is part of Pike. For copyright information see COPYRIGHT. || Pike is distributed under GPL, LGPL and MPL. See the file COPYING || for more information. */ #include "global.h" #include "svalue.h" #include "array.h" #include "object.h" #include "las.h" #include "stralloc.h" #include "interpret.h" #include "opcodes.h" #include "pike_error.h" #include "pike_types.h" #include "fsort.h" #include "builtin_functions.h" #include "pike_memory.h" #include "gc.h" #include "main.h" #include "pike_security.h" #include "stuff.h" #include "bignum.h" #include "cyclic.h" #include "multiset.h" #include "mapping.h" /** The empty array. */ PMOD_EXPORT struct array empty_array= { PIKE_CONSTANT_MEMOBJ_INIT(1, PIKE_T_ARRAY), /* Never free */ &weak_empty_array, /* Next */ 0, /* previous */ 0, /* Size = 0 */ 0, /* malloced Size = 0 */ 0, /* no types */ 0, /* no flags */ empty_array.real_item, /* Initialize the item pointer. */ {SVALUE_INIT_FREE}, }; /** The empty weak array. */ PMOD_EXPORT struct array weak_empty_array= { PIKE_CONSTANT_MEMOBJ_INIT(1, PIKE_T_ARRAY), 0, &empty_array, 0, 0, 0, ARRAY_WEAK_FLAG, weak_empty_array.real_item, {SVALUE_INIT_FREE}, }; struct array *first_array = &empty_array; struct array *gc_internal_array = 0; static struct array *gc_mark_array_pos; #ifdef TRACE_UNFINISHED_TYPE_FIELDS PMOD_EXPORT int accept_unfinished_type_fields = 0; PMOD_EXPORT void dont_accept_unfinished_type_fields (void *orig) { accept_unfinished_type_fields = (int) orig; } #endif /** * Allocate an array. This might be changed in the future to allocate * linked lists or something. The new array has zero references. * * When building arrays, it is recommended that you push the values on * the stack and call aggregate_array or f_aggregate instead of * allocating and filling in the values 'by hand'. * * @param size The size of the new array, in elements. * @param extra_space The number of extra elements space * should be reserved for. * @return A pointer to the allocated array struct. */ PMOD_EXPORT struct array *real_allocate_array(ptrdiff_t size, ptrdiff_t extra_space) { struct array *v; if(size+extra_space == 0) { add_ref(&empty_array); return &empty_array; } /* Limits size to (1<<29)-4 */ if( (size_t)(size+extra_space-1) > (LONG_MAX-sizeof(struct array))/sizeof(struct svalue) ) Pike_error("Too large array (size %ld exceeds %ld).\n", (long)(size+extra_space-1), (long)((LONG_MAX-sizeof(struct array))/sizeof(struct svalue)) ); v=malloc(sizeof(struct array)+ (size+extra_space-1)*sizeof(struct svalue)); if(!v) Pike_error(msg_out_of_mem_2, sizeof(struct array)+ (size+extra_space-1)*sizeof(struct svalue)); GC_ALLOC(v); if (size+extra_space) /* for now, we don't know what will go in here */ v->type_field = BIT_MIXED | BIT_UNFINISHED; else v->type_field = 0; v->flags=0; v->malloced_size = DO_NOT_WARN((INT32)(size + extra_space)); v->item=v->real_item; v->size = DO_NOT_WARN((INT32)size); INIT_PIKE_MEMOBJ(v, T_ARRAY); DOUBLELINK (first_array, v); { struct svalue *item = ITEM(v); struct svalue *item_end = item + v->size; while (item < item_end) *item++ = svalue_int_zero; } return v; } /** * Free an array without freeing the values inside it. * Any values inside of the array will be kept. * @param v The array to be freed. */ static void array_free_no_free(struct array *v) { DOUBLEUNLINK (first_array, v); free(v); GC_FREE(v); } /** * Free an array. Call this when the array has zero references. * @param v The array to free. */ PMOD_EXPORT void really_free_array(struct array *v) { #ifdef PIKE_DEBUG if(v == & empty_array || v == &weak_empty_array) Pike_fatal("Tried to free some *_empty_array.\n"); if (v->refs) { #ifdef DEBUG_MALLOC describe_something(v, T_ARRAY, 0,2,0, NULL); #endif Pike_fatal("Freeing array with %d refs.\n", v->refs); } #endif #ifdef PIKE_DEBUG if(d_flag > 1) array_check_type_field(v); #endif add_ref(v); EXIT_PIKE_MEMOBJ(v); free_svalues(ITEM(v), v->size, v->type_field); sub_ref(v); array_free_no_free(v); } /** * Decrement the references (and free if unused) an array if it is not null. */ PMOD_EXPORT void do_free_array(struct array *a) { if (a) free_array(a); } /** * Free all elements in an array and set them to zero. */ PMOD_EXPORT void clear_array(struct array *a) { if (!a->size) return; free_svalues(ITEM(a), a->size, a->type_field); /* NB: We know that INT_T == 0. */ memset(ITEM(a), 0, a->size * sizeof(struct svalue)); a->type_field = BIT_INT; } /** * Set the flags on an array. If the array is empty then only the * weak flag is significant. */ PMOD_EXPORT struct array *array_set_flags(struct array *a, int flags) { if (a->size) a->flags = flags; else { free_array(a); if (flags & ARRAY_WEAK_FLAG) add_ref(a = &weak_empty_array); else add_ref(a = &empty_array); } return a; } /** * Extract an svalue from an array. This function frees the contents of * of the svalue 's' and replaces it with a copy of the * contents from index 'index' in the array 'v'. * * @param index The index of the array to be extracted. * @param s The recipient of the extracted array element. * @param v The array to extract the element from. * * This function is similar to * assign_svalue(s, v->item + n); * except that it adds debug and safety measures. Usually, this function * is not needed. * * @note If n is out of bounds, Pike will dump core. If Pike was compiled * with DEBUG, a message will be written first stating what the problem was. */ PMOD_EXPORT void array_index(struct svalue *s,struct array *v,INT32 index) { #ifdef PIKE_DEBUG if(index<0 || index>=v->size) Pike_fatal("Illegal index in low level index routine.\n"); #endif add_ref(v); assign_svalue(s, ITEM(v) + index); free_array(v); } /** Is destructive on data if destructive is set and it only has one ref. */ PMOD_EXPORT struct array *array_column (struct array *data, struct svalue *index, int destructive) { int e; struct array *a; TYPE_FIELD types = 0; DECLARE_CYCLIC(); /* Optimization */ if(data->refs == 1 && destructive) { /* An array with one ref cannot possibly be cyclic */ struct svalue sval; data->type_field = BIT_MIXED | BIT_UNFINISHED; for(e=0;e<data->size;e++) { index_no_free(&sval, ITEM(data)+e, index); types |= 1 << TYPEOF(sval); free_svalue(ITEM(data)+e); move_svalue (ITEM(data) + e, &sval); } data->type_field = types; add_ref (data); return data; } if((a=(struct array *)BEGIN_CYCLIC(data,0))) { add_ref(a); }else{ push_array(a=allocate_array(data->size)); SET_CYCLIC_RET(a); for(e=0;e<a->size;e++) { index_no_free(ITEM(a)+e, ITEM(data)+e, index); types |= 1 << TYPEOF(ITEM(a)[e]); } a->type_field = types; dmalloc_touch_svalue(Pike_sp-1); Pike_sp--; } END_CYCLIC(); return a; } PMOD_EXPORT void simple_array_index_no_free(struct svalue *s, struct array *a,struct svalue *ind) { switch(TYPEOF(*ind)) { case T_INT: { INT_TYPE p = ind->u.integer; INT_TYPE i = p < 0 ? p + a->size : p; if(i<0 || i>=a->size) { struct svalue tmp; SET_SVAL(tmp, T_ARRAY, 0, array, a); if (a->size) { index_error(0,0,0,&tmp,ind, "Index %"PRINTPIKEINT"d is out of array range " "%d..%d.\n", p, -a->size, a->size-1); } else { index_error(0,0,0,&tmp,ind, "Attempt to index the empty array with %"PRINTPIKEINT"d.\n", p); } } array_index_no_free(s,a,i); break; } case T_STRING: { SET_SVAL(*s, T_ARRAY, 0, array, array_column(a, ind, 0)); break; } default: { struct svalue tmp; SET_SVAL(tmp, T_ARRAY, 0, array, a); index_error(0,0,0,&tmp,ind,"Array index is neither int nor string.\n"); } } } /** * Extract an svalue from an array. */ PMOD_EXPORT void array_free_index(struct array *v,INT32 index) { #ifdef PIKE_DEBUG if(index<0 || index>=v->size) Pike_fatal("Illegal index in low level free index routine.\n"); #endif free_svalue(ITEM(v) + index); } /** set an element in an array to a value. * * @param a the array whose element is to be set * @param ind an int or string containing the index to set * @param s the value to set */ PMOD_EXPORT void simple_set_index(struct array *a,struct svalue *ind,struct svalue *s) { switch (TYPEOF(*ind)) { case T_INT: { INT_TYPE p = ind->u.integer; INT_TYPE i = p < 0 ? p + a->size : p; if(i<0 || i>=a->size) { if (a->size) { Pike_error("Index %"PRINTPIKEINT"d is out of array range " "%d..%d.\n", p, -a->size, a->size-1); } else { Pike_error("Attempt to index the empty array with %"PRINTPIKEINT"d.\n", p); } } array_set_index(a,i,s); break; } case T_STRING: { INT32 i, n; check_stack(2); mark_free_svalue (Pike_sp++); push_svalue(ind); for (i = 0, n = a->size; i < n; i++) { assign_svalue(Pike_sp-2, &a->item[i]); assign_lvalue(Pike_sp-2, s); } pop_n_elems(2); break; } default: { struct svalue tmp; SET_SVAL(tmp, T_ARRAY, 0, array, a); index_error(0,0,0,&tmp,ind,"Array index is neither int nor string.\n"); } } } /** * Insert an svalue into an array and grow the array if necessary. */ PMOD_EXPORT struct array *array_insert(struct array *v,struct svalue *s,INT32 index) { #ifdef PIKE_DEBUG if(index<0 || index>v->size) Pike_fatal("Illegal index in low level insert routine.\n"); #endif /* Can we fit it into the existing block? */ if(v->refs<=1 && (v->malloced_size > v->size)) { if ((v->item != v->real_item) && (((index<<1) < v->size) || ((v->item + v->size) == (v->real_item + v->malloced_size)))) { memmove(ITEM(v)-1, ITEM(v), index * sizeof(struct svalue)); v->item--; } else { memmove(ITEM(v)+index+1, ITEM(v)+index, (v->size-index) * sizeof(struct svalue)); } assert_free_svalue (ITEM(v) + index); v->size++; }else{ struct array *ret; ret = array_set_flags(allocate_array_no_init(v->size+1, v->size + 1), v->flags); ret->type_field = v->type_field; memcpy(ITEM(ret), ITEM(v), sizeof(struct svalue) * index); memcpy(ITEM(ret)+index+1, ITEM(v)+index, sizeof(struct svalue) * (v->size-index)); assert_free_svalue (ITEM(ret) + index); if (v->refs == 1) { /* Optimization: Steal the references. */ v->size = 0; } else if (v->type_field & BIT_REF_TYPES) { /* Adjust the references. */ int e = v->size; struct svalue *s = ITEM(ret); while (e--) { if (REFCOUNTED_TYPE(TYPEOF(*s))) add_ref(s->u.dummy); s++; } } free_array(v); v=ret; } array_set_index_no_free (v,index,s); return v; } /* * lval += ({ @args }); * * Stack is lvalue followed by arguments. */ void o_append_array(INT32 args) { struct svalue *lval = Pike_sp - args; struct svalue *val = lval + 2; int lval_type; #ifdef PIKE_DEBUG if (args < 3) { Pike_fatal("Too few arguments to o_append_array(): %d\n", args); } #endif args -= 3; /* Note: val should always be a zero here! */ lval_type = lvalue_to_svalue_no_free(val, lval); if (TYPEOF(*val) == T_ARRAY) { struct svalue tmp; struct array *v = val->u.array; /* simple case: if refs == 2 and there is space, just add the element and do not do the assign. This can be done because the lvalue already has the array as it's value. */ if( (v->refs == 2) && (lval_type != PIKE_T_GET_SET) ) { if ((TYPEOF(*lval) == T_OBJECT) && lval->u.object->prog && ((FIND_LFUN(lval->u.object->prog, LFUN_ASSIGN_INDEX) >= 0) || (FIND_LFUN(lval->u.object->prog, LFUN_ASSIGN_ARROW) >= 0))) { /* There's a function controlling assignments in this object, * so we can't alter the array in place. */ } else if( v->real_item+v->malloced_size >= v->item+v->size+args ) { struct svalue *from = val+1; int i; for( i = 0; i<args; i++,from++ ) { v->item[v->size++] = *from; v->type_field |= 1<<TYPEOF(*from); } Pike_sp -= args; stack_pop_2_elems_keep_top(); return; } } /* This is so that we can minimize the number of references * to the array, and be able to use destructive operations. * It's done by freeing the old reference to foo after it has been * pushed on the stack. That way foo can have only 1 reference if we * are lucky, and then the low array manipulation routines can * be destructive if they like. */ SET_SVAL(tmp, PIKE_T_INT, NUMBER_NUMBER, integer, 0); assign_lvalue(lval, &tmp); if (args == 1) { val->u.array = array_insert(v, Pike_sp - 1, v->size); pop_stack(); } else if (!args) { /* FIXME: Weak? */ if ((v->refs > 1) && (v->size)) { val->u.array = copy_array(v); free_array(v); } } else { int i; for (i = 0; i < args; i++) { v = array_insert(v, val + 1 + i, v->size); } val->u.array = v; pop_n_elems(args); } assign_lvalue(lval, val); } else { int i; struct object *o; struct program *p; /* Fall back to aggregate(). */ f_aggregate(args); if ((TYPEOF(*val) == T_OBJECT) && /* One ref in the lvalue, and one on the stack. */ ((o = val->u.object)->refs <= 2) && (p = o->prog) && (i = FIND_LFUN(p->inherits[SUBTYPEOF(Pike_sp[-2])].prog, LFUN_ADD_EQ)) != -1) { apply_low(o, i + p->inherits[SUBTYPEOF(Pike_sp[-2])].identifier_level, 1); /* NB: The lvalue already contains the object, so * no need to reassign it. */ pop_stack(); } else { f_add(2); assign_lvalue(lval, val); } } stack_pop_2_elems_keep_top(); } /** * Shrink an array destructively */ PMOD_EXPORT struct array *array_shrink(struct array *v, ptrdiff_t size) { struct array *a; #ifdef PIKE_DEBUG if(v->refs>2) /* Odd, but has to be two */ Pike_fatal("Array shrink on array with many references.\n"); if(size > v->size) Pike_fatal("Illegal argument to array_shrink.\n"); #endif /* Ensure that one of the empty arrays are returned if size is zero. */ if( !size ) { struct array *e = (v->flags & ARRAY_WEAK_FLAG ? &weak_empty_array : &empty_array); if (e != v) { free_array (v); add_ref (e); } return e; } if (size == v->size) return v; /* Free items outside the new array. */ free_svalues(ITEM(v) + size, v->size - size, v->type_field); v->size=size; if(size*4 < v->malloced_size + 4) /* Should we realloc it? */ { a = array_set_flags(allocate_array_no_init(size, 0), v->flags); if (a->size) { a->type_field = v->type_field; } memcpy(ITEM(a), ITEM(v), size*sizeof(struct svalue)); v->size=0; free_array(v); return a; }else{ return v; } } /** * Resize an array destructively, with the exception that a may be one * of the static empty arrays. */ PMOD_EXPORT struct array *resize_array(struct array *a, INT32 size) { #ifdef PIKE_DEBUG if(d_flag > 1) array_check_type_field(a); #endif /* Ensure that one of the empty arrays are returned if size is zero. */ if (!size && a->malloced_size) return array_shrink (a, size); if(a->size == size) return a; if(size > a->size) { /* We should grow the array */ if((a->malloced_size >= size) && ((a->item + size) <= (a->real_item + a->malloced_size))) { for(;a->size < size; a->size++) { SET_SVAL(ITEM(a)[a->size], T_INT, NUMBER_NUMBER, integer, 0); } a->type_field |= BIT_INT; return a; } else { struct array *ret; ret = array_set_flags(low_allocate_array(size, size + 1), a->flags); memcpy(ITEM(ret), ITEM(a), sizeof(struct svalue)*a->size); ret->type_field = DO_NOT_WARN((TYPE_FIELD)(a->type_field | BIT_INT)); a->size=0; free_array(a); return ret; } } else { return array_shrink(a, size); } } /** * Remove an index from an array and shrink the array destructively. * Because this function is destructive, and might free the region for 'v', * do not use this function on arrays that might have been sent to a * Pike function. * * @param v The array to operate on. * @param index The index of the element to remove * @return a new array with the contents of the input minus the removed index. */ PMOD_EXPORT struct array *array_remove(struct array *v,INT32 index) { struct array *a; #ifdef PIKE_DEBUG if(index<0 || index >= v->size) Pike_fatal("Illegal argument to array_remove.\n"); #endif array_free_index(v, index); if (v->size == 1) { v->size = 0; /* NOTE: The following uses the fact that array_set_flags() * will reallocate the array if it has zero size! */ return array_set_flags(v, v->flags); } else if(v->size*4 + 4 < v->malloced_size ) /* Should we realloc it? */ { a = array_set_flags(allocate_array_no_init(v->size-1, 0), v->flags); a->type_field = v->type_field; if(index>0) memcpy(ITEM(a), ITEM(v), index*sizeof(struct svalue)); if(v->size-index>1) memcpy(ITEM(a)+index, ITEM(v)+index+1, (v->size-index-1)*sizeof(struct svalue)); v->size=0; free_array(v); return a; } else { if(v->size-index>1) { memmove(ITEM(v)+index, ITEM(v)+index+1, (v->size-index-1)*sizeof(struct svalue)); } v->size--; return v; } } static ptrdiff_t fast_array_search( struct array *v, const struct svalue *s, ptrdiff_t start ) { ptrdiff_t e; struct svalue *ip = ITEM(v); for(e=start;e<v->size;e++) if(is_eq(ip+e,s)) return e; return -1; } /** * Search for in svalue in an array. * @param v the array to search * @param s the value to search for * @param start the index to start search at * @return the index if found, -1 otherwise */ PMOD_EXPORT ptrdiff_t array_search(struct array *v, const struct svalue *s, ptrdiff_t start) { #ifdef PIKE_DEBUG if(start<0) Pike_fatal("Start of find_index is less than zero.\n"); #endif #ifdef PIKE_DEBUG if(d_flag > 1) array_check_type_field(v); #endif safe_check_destructed(s); /* Why search for something that is not there? * however, we must explicitly check for searches * for destructed objects/functions */ if((v->type_field & (1 << TYPEOF(*s))) || (UNSAFE_IS_ZERO(s) && (v->type_field & (BIT_FUNCTION|BIT_OBJECT))) || ( (v->type_field | (1<<TYPEOF(*s))) & BIT_OBJECT )) /* for overloading */ return fast_array_search( v, s, start ); return -1; } /** * Slice a piece of an array (conditionally destructively) * @param v the array to slice * @param start the beginning element to be included * @param end the element beyond the end of the slice * @return an array consisting of v[start..end-1] */ PMOD_EXPORT struct array *slice_array(struct array *v, ptrdiff_t start, ptrdiff_t end) { struct array *a; #ifdef PIKE_DEBUG if(start > end || end>v->size || start<0) Pike_fatal("Illegal arguments to slice_array()\n"); if(d_flag > 1) array_check_type_field(v); #endif if(v->refs==1) /* Can we use the same array? */ { if((end-start)*4 > v->malloced_size) /* don't waste too much memory */ { add_ref(v); free_svalues(ITEM(v) + end, v->size - end, v->type_field); free_svalues(ITEM(v), start, v->type_field); v->item+=start; v->size=end-start; #ifdef PIKE_DEBUG if(d_flag>1) check_array(v); #endif return v; } } a=allocate_array_no_init(end-start,0); if (end-start) { a->type_field = v->type_field; assign_svalues_no_free(ITEM(a), ITEM(v)+start, end-start, v->type_field); } return a; } /** * Slice a piece of an array (nondestructively). * @return an array consisting of v[start..end-1] */ PMOD_EXPORT struct array *friendly_slice_array(struct array *v, ptrdiff_t start, ptrdiff_t end) { struct array *a; #ifdef PIKE_DEBUG if(start > end || end>v->size || start<0) Pike_fatal("Illegal arguments to slice_array()\n"); if(d_flag > 1) array_check_type_field(v); #endif a=allocate_array_no_init(end-start,0); a->type_field = v->type_field; assign_svalues_no_free(ITEM(a), ITEM(v)+start, end-start, v->type_field); return a; } /** * Copy an array. * @param v the array to be copied. * @returns the copy of the input array. */ PMOD_EXPORT struct array *copy_array(struct array *v) { struct array *a; if (!v->size) { /* Empty array. */ add_ref(&empty_array); return &empty_array; } a=allocate_array_no_init(v->size, 0); a->type_field = v->type_field; assign_svalues_no_free(ITEM(a), ITEM(v), v->size, v->type_field); return a; } /** * Clean an array from destructed objects. */ PMOD_EXPORT void check_array_for_destruct(struct array *v) { int e; INT16 types; types = 0; #ifdef PIKE_DEBUG if(d_flag > 1) array_check_type_field(v); #endif if(v->type_field & (BIT_OBJECT | BIT_FUNCTION)) { for(e=0; e<v->size; e++) { if((TYPEOF(ITEM(v)[e]) == T_OBJECT || (TYPEOF(ITEM(v)[e]) == T_FUNCTION && SUBTYPEOF(ITEM(v)[e]) != FUNCTION_BUILTIN)) && (!ITEM(v)[e].u.object->prog)) { free_svalue(ITEM(v)+e); SET_SVAL(ITEM(v)[e], T_INT, NUMBER_DESTRUCTED, integer, 0); types |= BIT_INT; }else{ types |= 1<<TYPEOF(ITEM(v)[e]); } } v->type_field = types; } } /** * This function finds the index of any destructed object in a set. * It could be optimized to search out the object part with a binary * search lookup if the array is mixed. */ PMOD_EXPORT INT32 array_find_destructed_object(struct array *v) { INT32 e; TYPE_FIELD types; #ifdef PIKE_DEBUG if(d_flag > 1) array_check_type_field(v); #endif if(v->type_field & (BIT_OBJECT | BIT_FUNCTION)) { types=0; for(e=0; e<v->size; e++) { if((TYPEOF(ITEM(v)[e]) == T_OBJECT || (TYPEOF(ITEM(v)[e]) == T_FUNCTION && SUBTYPEOF(ITEM(v)[e]) != FUNCTION_BUILTIN)) && (!ITEM(v)[e].u.object->prog)) return e; types |= 1<<TYPEOF(ITEM(v)[e]); } v->type_field = types; } #ifdef PIKE_DEBUG if(d_flag > 1) array_check_type_field(v); #endif return -1; } static int internal_cmpfun(INT32 *a, INT32 *b, cmpfun current_cmpfun, struct svalue *current_array_p) { int res = current_cmpfun(current_array_p + *a, current_array_p + *b); /* If the comparison considers the elements equal we compare their * positions. Thus we get a stable sort function. */ return res ? res : *a - *b; } #define CMP(X,Y) internal_cmpfun((X),(Y),current_cmpfun, current_array_p) #define TYPE INT32 #define ID get_order_fsort #define EXTRA_ARGS ,cmpfun current_cmpfun, struct svalue *current_array_p #define XARGS ,current_cmpfun, current_array_p #include "fsort_template.h" #undef CMP #undef TYPE #undef ID #undef EXTRA_ARGS #undef XARGS /* The sort is stable. */ INT32 *get_order(struct array *v, cmpfun fun) { INT32 e, *current_order; ONERROR tmp; if(!v->size) return 0; /* Overlow safe: ((1<<29)-4)*4 < ULONG_MAX */ current_order=xalloc(v->size * sizeof(INT32)); SET_ONERROR(tmp, free, current_order); for(e=0; e<v->size; e++) current_order[e]=e; get_order_fsort(current_order, current_order+v->size-1, fun, ITEM(v)); UNSET_ONERROR(tmp); return current_order; } /* Returns CMPFUN_UNORDERED if no relation is established through lfun * calls, or -CMPFUN_UNORDERED if no order defining lfuns (i.e. `< or * `>) were found. */ static int lfun_cmp (const struct svalue *a, const struct svalue *b) { struct program *p; int default_res = -CMPFUN_UNORDERED, fun; if (TYPEOF(*a) == T_OBJECT && (p = a->u.object->prog)) { if ((fun = FIND_LFUN(p->inherits[SUBTYPEOF(*a)].prog, LFUN_LT)) != -1) { push_svalue(b); apply_low(a->u.object, fun + p->inherits[SUBTYPEOF(*a)].identifier_level, 1); if(!UNSAFE_IS_ZERO(Pike_sp-1)) { pop_stack(); return -1; } pop_stack(); default_res = CMPFUN_UNORDERED; } if ((fun = FIND_LFUN(p->inherits[SUBTYPEOF(*a)].prog, LFUN_GT)) != -1) { push_svalue(b); apply_low(a->u.object, fun + p->inherits[SUBTYPEOF(*a)].identifier_level, 1); if(!UNSAFE_IS_ZERO(Pike_sp-1)) { pop_stack(); return 1; } pop_stack(); default_res = CMPFUN_UNORDERED; } /* NB: It's not a good idea to use LFUN_EQ here if * there is neither LFUN_LT nor LFUN_GT, since * the sorting order may get confused, which * will cause merge_array_with_order() to fail. */ if ((default_res == CMPFUN_UNORDERED) && (fun = FIND_LFUN(p->inherits[SUBTYPEOF(*a)].prog, LFUN_EQ)) != -1) { push_svalue(b); apply_low(a->u.object, fun + p->inherits[SUBTYPEOF(*a)].identifier_level, 1); if (!UNSAFE_IS_ZERO(Pike_sp-1)) { pop_stack(); return 0; } pop_stack(); } } if(TYPEOF(*b) == T_OBJECT && (p = b->u.object->prog)) { if ((fun = FIND_LFUN(p->inherits[SUBTYPEOF(*b)].prog, LFUN_LT)) != -1) { push_svalue(a); apply_low(b->u.object, fun + p->inherits[SUBTYPEOF(*b)].identifier_level, 1); if(!UNSAFE_IS_ZERO(Pike_sp-1)) { pop_stack(); return 1; } pop_stack(); default_res = CMPFUN_UNORDERED; } if ((fun = FIND_LFUN(p->inherits[SUBTYPEOF(*b)].prog, LFUN_GT)) != -1) { push_svalue(a); apply_low(b->u.object, fun + p->inherits[SUBTYPEOF(*b)].identifier_level, 1); if(!UNSAFE_IS_ZERO(Pike_sp-1)) { pop_stack(); return -1; } pop_stack(); default_res = CMPFUN_UNORDERED; } /* NB: It's not a good idea to use LFUN_EQ here if * there is neither LFUN_LT nor LFUN_GT, since * the sorting order may get confused, which * will cause merge_array_with_order() to fail. */ if ((default_res == CMPFUN_UNORDERED) && (fun = FIND_LFUN(p->inherits[SUBTYPEOF(*b)].prog, LFUN_EQ)) != -1) { push_svalue(a); apply_low(b->u.object, fun + p->inherits[SUBTYPEOF(*b)].identifier_level, 1); if (!UNSAFE_IS_ZERO(Pike_sp-1)) { pop_stack(); return 0; } pop_stack(); } } return default_res; } static int obj_or_func_cmp (const struct svalue *a, const struct svalue *b) /* Call with either two T_OBJECT or two T_FUNCTION. */ { int a_subtype, b_subtype, res; struct svalue tmp_a, tmp_b; assert ((TYPEOF(*a) == T_OBJECT && TYPEOF(*b) == T_OBJECT) || (TYPEOF(*a) == T_FUNCTION && TYPEOF(*b) == T_FUNCTION)); if (a->u.object == b->u.object) return SUBTYPEOF(*a) - SUBTYPEOF(*b); /* Destructed objects are considered equal to each other, and * greater than others. That makes them sort close to real zeroes, * which are sorted after objects without compare functions. */ if (!a->u.object->prog) return !b->u.object->prog ? 0 : 1; else if (!b->u.object->prog) return -1; if (TYPEOF(*a) == T_FUNCTION) { /* Sort pike functions before builtins. */ if (SUBTYPEOF(*a) == FUNCTION_BUILTIN) { if (SUBTYPEOF(*b) == FUNCTION_BUILTIN) return a->u.efun < b->u.efun ? -1 : (a->u.efun == b->u.efun ? 0 : 1); else return 1; } else if (SUBTYPEOF(*b) == FUNCTION_BUILTIN) return -1; if (a->u.object->prog != b->u.object->prog) return a->u.object->prog < b->u.object->prog ? -1 : 1; if (SUBTYPEOF(*a) != SUBTYPEOF(*b)) return SUBTYPEOF(*a) - SUBTYPEOF(*b); /* We have the same function but in different objects. Compare the * objects themselves. */ /* FIXME: Should we try to convert the subtypes to the ones for * the closest inherits? That'd make some sense if the functions * are private, but otherwise it's doubtful. */ a_subtype = b_subtype = SUBTYPEOF(*a); SET_SVAL(tmp_a, T_OBJECT, 0, object, a->u.object); a = &tmp_a; SET_SVAL(tmp_b, T_OBJECT, 0, object, b->u.object); b = &tmp_b; } else { a_subtype = SUBTYPEOF(*a); b_subtype = SUBTYPEOF(*b); } res = lfun_cmp (a, b); if (res == -CMPFUN_UNORDERED) { /* If the objects had no inequality comparison lfuns to call, use * their pointers to get a well defined internal sort order. Let's * also group objects cloned from the same program. */ if (a->u.object->prog == b->u.object->prog) return a->u.object < b->u.object ? -1 : 1; else return a->u.object->prog < b->u.object->prog ? -1 : 1; } else if (!res) return a_subtype - b_subtype; return res; } int set_svalue_cmpfun(const struct svalue *a, const struct svalue *b) { int typediff = TYPEOF(*a) - TYPEOF(*b); if (typediff) { if (TYPEOF(*a) == T_OBJECT || TYPEOF(*b) == T_OBJECT) { int res = lfun_cmp (a, b); if (res != -CMPFUN_UNORDERED) return res; } return typediff; } switch(TYPEOF(*a)) { case T_FLOAT: if(a->u.float_number < b->u.float_number) return -1; if(a->u.float_number > b->u.float_number) return 1; return 0; case T_INT: if(a->u.integer < b->u.integer) return -1; if(a->u.integer > b->u.integer) return 1; return 0; case T_OBJECT: case T_FUNCTION: return obj_or_func_cmp (a, b); default: if(a->u.refs < b->u.refs) return -1; if(a->u.refs > b->u.refs) return 1; return 0; } /* NOT REACHED */ } static int switch_svalue_cmpfun(const struct svalue *a, const struct svalue *b) { int typediff = TYPEOF(*a) - TYPEOF(*b); if (typediff) return typediff; switch(TYPEOF(*a)) { case T_INT: if(a->u.integer < b->u.integer) return -1; if(a->u.integer > b->u.integer) return 1; return 0; case T_FLOAT: if(a->u.float_number < b->u.float_number) return -1; if(a->u.float_number > b->u.float_number) return 1; return 0; case T_STRING: return DO_NOT_WARN((int)my_quick_strcmp(a->u.string, b->u.string)); case T_OBJECT: case T_FUNCTION: return obj_or_func_cmp (a, b); default: if(a->u.refs < b->u.refs) return -1; if(a->u.refs > b->u.refs) return 1; return 0; } /* NOT REACHED */ } int alpha_svalue_cmpfun(const struct svalue *a, const struct svalue *b) { int typediff = TYPEOF(*a) - TYPEOF(*b); if (typediff) { if (TYPEOF(*a) == T_OBJECT || TYPEOF(*b) == T_OBJECT) { int res = lfun_cmp (a, b); if (res != -CMPFUN_UNORDERED) return res; } return typediff; } switch(TYPEOF(*a)) { case T_INT: if(a->u.integer < b->u.integer) return -1; if(a->u.integer > b->u.integer) return 1; return 0; case T_FLOAT: if(a->u.float_number < b->u.float_number) return -1; if(a->u.float_number > b->u.float_number) return 1; return 0; case T_STRING: return DO_NOT_WARN((int)my_quick_strcmp(a->u.string, b->u.string)); case T_ARRAY: if(a==b) return 0; if (!a->u.array->size) if (!b->u.array->size) /* There are several different empty arrays. */ return 0; else return -1; else if (!b->u.array->size) return 1; return alpha_svalue_cmpfun(ITEM(a->u.array), ITEM(b->u.array)); case T_MULTISET: if (a == b) return 0; { ptrdiff_t a_pos = multiset_first (a->u.multiset); ptrdiff_t b_pos = multiset_first (b->u.multiset); int res; struct svalue ind_a, ind_b; if (a_pos < 0) if (b_pos < 0) return 0; else return -1; else if (b_pos < 0) return 1; res = alpha_svalue_cmpfun ( use_multiset_index (a->u.multiset, a_pos, ind_a), use_multiset_index (b->u.multiset, b_pos, ind_b)); sub_msnode_ref (a->u.multiset); sub_msnode_ref (b->u.multiset); return res; } case T_OBJECT: case T_FUNCTION: return obj_or_func_cmp (a, b); default: if(a->u.ptr < b->u.ptr) return -1; if(a->u.ptr > b->u.ptr) return 1; return 0; } /* NOT REACHED */ } #define CMP(X,Y) alpha_svalue_cmpfun(X,Y) #define TYPE struct svalue #define ID low_sort_svalues #include "fsort_template.h" #undef CMP #undef TYPE #undef ID /* Same, but only integers. */ static int alpha_int_svalue_cmpfun(const struct svalue *a, const struct svalue *b) { #ifdef PIKE_DEBUG if ((TYPEOF(*a) != T_INT) || (TYPEOF(*b) != T_INT)) { Pike_fatal("Invalid elements in supposedly integer array.\n"); } #endif /* PIKE_DEBUG */ if(a->u.integer < b->u.integer) return -1; if(a->u.integer > b->u.integer) return 1; return 0; } #define CMP(X,Y) alpha_int_svalue_cmpfun(X,Y) #define TYPE struct svalue #define ID low_sort_int_svalues #include "fsort_template.h" #undef CMP #undef TYPE #undef ID /** This sort is unstable. */ PMOD_EXPORT void sort_array_destructively(struct array *v) { if(!v->size) return; if (v->type_field == BIT_INT) { low_sort_int_svalues(ITEM(v), ITEM(v)+v->size-1); } else { low_sort_svalues(ITEM(v), ITEM(v)+v->size-1); } } #define SORT_BY_INDEX #define EXTRA_LOCALS int cmpfun_res; #define CMP(X,Y) ((cmpfun_res = \ (alpha_svalue_cmpfun(svals + X, svals + Y) & \ ~CMPFUN_UNORDERED)) ? \ cmpfun_res : pos[X] - pos[Y]) #define SWAP(X,Y) { \ {struct svalue tmp = svals[X]; svals[X] = svals[Y]; svals[Y] = tmp;} \ {int tmp = pos[X]; pos[X] = pos[Y]; pos[Y] = tmp;} \ } #define TYPE struct svalue #define ID low_stable_sort_svalues #define EXTRA_ARGS , struct svalue *svals, INT32 *pos, int size #define XARGS , svals, pos, size #include "fsort_template.h" #undef SORT_BY_INDEX #undef EXTRA_LOCALS #undef CMP #undef SWAP #undef TYPE #undef ID #undef EXTRA_ARGS #undef XARGS /** This sort is stable. The return value is like the one from * get_alpha_order. */ PMOD_EXPORT INT32 *stable_sort_array_destructively(struct array *v) { INT32 *current_order; ONERROR tmp; int e; if(!v->size) return NULL; /* Overflow safe: ((1<<29)-4)*4 < ULONG_MAX */ current_order=xalloc(v->size * sizeof(INT32)); SET_ONERROR(tmp, free, current_order); for(e=0; e<v->size; e++) current_order[e]=e; low_stable_sort_svalues (0, v->size - 1, ITEM (v), current_order, v->size); UNSET_ONERROR (tmp); return current_order; } /** * Return an 'order' suitable for making mappings and multisets. */ PMOD_EXPORT INT32 *get_set_order(struct array *a) { return get_order(a, set_svalue_cmpfun); } /** * Return an 'order' suitable for switches. * * Note: This is used by encode_value_canonic(). It must keep the * sorting rules for all the types that function allows in multiset * and mapping indices. */ PMOD_EXPORT INT32 *get_switch_order(struct array *a) { return get_order(a, switch_svalue_cmpfun); } /** * Return an 'order' suitable for sorting. */ PMOD_EXPORT INT32 *get_alpha_order(struct array *a) { return get_order(a, alpha_svalue_cmpfun); } static INT32 low_lookup(struct array *v, struct svalue *s, cmpfun fun) { INT32 a,b,c; int q; a=0; b=v->size; while(b > a) { c=(a+b)/2; q=fun(ITEM(v)+c,s); if(q < 0) a=c+1; else if(q > 0) b=c; else return c; } if(a<v->size && fun(ITEM(v)+a,s)<0) a++; return ~a; } INT32 set_lookup(struct array *a, struct svalue *s) { #ifdef PIKE_DEBUG if(d_flag > 1) array_check_type_field(a); #endif /* objects may have `< `> operators, evil stuff! */ if(TYPEOF(*s) != T_OBJECT && !(a->type_field & BIT_OBJECT)) { /* face it, it's not there */ if( (((2 << TYPEOF(*s)) -1) & a->type_field) == 0) return -1; /* face it, it's not there */ if( ((BIT_MIXED << TYPEOF(*s)) & BIT_MIXED & a->type_field) == 0) return ~a->size; } return low_lookup(a,s,set_svalue_cmpfun); } INT32 switch_lookup(struct array *a, struct svalue *s) { /* face it, it's not there */ #ifdef PIKE_DEBUG if(d_flag > 1) array_check_type_field(a); #endif /* objects may have `< `> operators, evil stuff! */ if(TYPEOF(*s) != T_OBJECT && !(a->type_field & BIT_OBJECT)) { if( (((2 << TYPEOF(*s)) -1) & a->type_field) == 0) return -1; /* face it, it's not there */ if( ((BIT_MIXED << TYPEOF(*s)) & BIT_MIXED & a->type_field) == 0) return ~a->size; } return low_lookup(a,s,switch_svalue_cmpfun); } /** * Reorganize an array in the order specified by 'order'. */ PMOD_EXPORT struct array *order_array(struct array *v, INT32 *order) { reorder((char *)ITEM(v),v->size,sizeof(struct svalue),order); return v; } /** * Copy and reorganize an array. */ PMOD_EXPORT struct array *reorder_and_copy_array(struct array *v, INT32 *order) { INT32 e; struct array *ret; ret=allocate_array_no_init(v->size, 0); ret->type_field = v->type_field; for(e=0;e<v->size;e++) assign_svalue_no_free(ITEM(ret)+e, ITEM(v)+order[e]); return ret; } /* Maybe I should have a 'clean' flag for this computation */ PMOD_EXPORT TYPE_FIELD array_fix_type_field(struct array *v) { int e; TYPE_FIELD t; if(v->flags & ARRAY_LVALUE) { v->type_field=BIT_MIXED|BIT_UNFINISHED; return BIT_MIXED|BIT_UNFINISHED; } t=0; for(e=0; e<v->size; e++) { check_svalue (ITEM(v) + e); t |= BITOF(ITEM(v)[e]); } #ifdef PIKE_DEBUG if(t & ~(v->type_field)) { describe(v); Pike_fatal("Type field out of order (old:0x%04x new:0x%04x)!\n", v->type_field, t); } #endif v->type_field = t; return t; } #ifdef PIKE_DEBUG /* Maybe I should have a 'clean' flag for this computation */ PMOD_EXPORT void array_check_type_field(struct array *v) { int e; TYPE_FIELD t; t=0; if(v->flags & ARRAY_LVALUE) return; #ifdef TRACE_UNFINISHED_TYPE_FIELDS if (v->type_field & BIT_UNFINISHED && !accept_unfinished_type_fields) { fputs ("Array got an unfinished type field.\n", stderr); describe_something (v, T_ARRAY, 2, 2, 0, NULL); } #endif for(e=0; e<v->size; e++) { if(TYPEOF(ITEM(v)[e]) > MAX_TYPE) Pike_fatal("Type is out of range.\n"); t |= 1 << TYPEOF(ITEM(v)[e]); } if(t & ~(v->type_field)) { describe(v); Pike_fatal("Type field out of order!\n"); } } #endif /* PIKE_DEBUG */ /** * Get a pointer to the 'union anything' specified if it is of the specified * type. The 'union anything' may be changed, but not the type. */ PMOD_EXPORT union anything *low_array_get_item_ptr(struct array *a, INT32 ind, TYPE_T t) { if(TYPEOF(ITEM(a)[ind]) == t) return & (ITEM(a)[ind].u); return 0; } /** * Get a pointer to the 'union anything' specified if it is of the specified * type. The 'union anything' may be changed, but not the type. * The differance between this routine and the one above is that this takes * the index as an svalue. */ PMOD_EXPORT union anything *array_get_item_ptr(struct array *a, struct svalue *ind, TYPE_T t) { INT_TYPE i, p; if(TYPEOF(*ind) != T_INT) Pike_error("Expected integer as array index, got %s.\n", get_name_of_type (TYPEOF(*ind))); p = ind->u.integer; i = p < 0 ? p + a->size : p; if(i<0 || i>=a->size) { if (a->size) { Pike_error("Index %"PRINTPIKEINT"d is out of array range " "%d..%d.\n", p, -a->size, a->size-1); } else { Pike_error("Attempt to index the empty array with %"PRINTPIKEINT"d.\n", p); } } return low_array_get_item_ptr(a,i,t); } /** * Organize an array of INT32 to specify how to zip two arrays together * to maintain the order. * The first item in this array is the size of the result * the rest is n >= 0 for a[ n ] * or n < 0 for b[ ~n ]. */ INT32 * merge(struct array *a,struct array *b,INT32 opcode) { ONERROR r; INT32 ap,bp,i,*ret,*ptr; ap=bp=0; #ifdef PIKE_DEBUG if(d_flag > 1) { array_check_type_field(a); array_check_type_field(b); } #endif if(!(a->type_field & b->type_field) && !((a->type_field | b->type_field) & BIT_OBJECT)) { /* do smart optimizations */ switch(opcode) { case PIKE_ARRAY_OP_AND: /* Trivially overflow safe */ ret=xalloc(sizeof(INT32)); *ret=0; return ret; case PIKE_ARRAY_OP_SUB: /* Overlow safe: ((1<<29)-4+1)*4 < ULONG_MAX */ ptr=ret=xalloc(sizeof(INT32)*(a->size+1)); *(ptr++)=a->size; for(i=0;i<a->size;i++) *(ptr++)=i; return ret; } } /* Note: The following is integer overflow safe as long as * sizeof(struct svalue) >= 2*sizeof(INT32). */ ptr=ret=xalloc(sizeof(INT32)*(a->size + b->size + 1)); SET_ONERROR(r, free,ret); ptr++; while(ap < a->size && bp < b->size) { i=set_svalue_cmpfun(ITEM(a)+ap,ITEM(b)+bp); if(i < 0) i=opcode >> 8; else if(i > 0) i=opcode; else i=opcode >> 4; if(i & PIKE_ARRAY_OP_A) *(ptr++)=ap; if(i & PIKE_ARRAY_OP_B) *(ptr++)=~bp; if(i & PIKE_ARRAY_OP_SKIP_A) ap++; if(i & PIKE_ARRAY_OP_SKIP_B) bp++; } if((opcode >> 8) & PIKE_ARRAY_OP_A) while(ap<a->size) *(ptr++)=ap++; if(opcode & PIKE_ARRAY_OP_B) while(bp<b->size) *(ptr++)=~(bp++); *ret = DO_NOT_WARN((INT32)(ptr-ret-1)); UNSET_ONERROR(r); return ret; } /** * This routine merges two arrays in the order specified by 'zipper' * zipper normally produced by merge() above. */ PMOD_EXPORT struct array *array_zip(struct array *a, struct array *b,INT32 *zipper) { INT32 size,e; struct array *ret; size=zipper[0]; zipper++; ret=allocate_array_no_init(size,0); for(e=0; e<size; e++) { if(*zipper >= 0) assign_svalue_no_free(ITEM(ret)+e, ITEM(a)+*zipper); else assign_svalue_no_free(ITEM(ret)+e, ITEM(b)+~*zipper); zipper++; } ret->type_field = a->type_field | b->type_field; return ret; } /** Add an arbitrary number of arrays together (destructively). * @param argp An array of svalues containing the arrays to be concatenated * Note that the svalues may get modified by this function. * @param args The number of elements in argp * @returns The resulting struct array. */ PMOD_EXPORT struct array *add_arrays(struct svalue *argp, INT32 args) { INT32 e, size; struct array *v; struct array *v2 = NULL; for(size=e=0;e<args;e++) size+=argp[e].u.array->size; #if 1 { INT32 tmp=0; /* Svalues needed so far. */ INT32 tmp2 = 0; INT32 e2 = -1; for(e=0;e<args;e++) { v=argp[e].u.array; if(v->refs == 1 && v->malloced_size >= size) { if (((v->item - v->real_item) >= tmp) && ((v->item + size - tmp) <= (v->real_item + v->malloced_size))) { /* There's enough space before and after. */ debug_malloc_touch(v); mark_free_svalue(argp + e); for(tmp=e-1;tmp>=0;tmp--) { v2 = argp[tmp].u.array; debug_malloc_touch(v2); v->type_field |= v2->type_field; assign_svalues_no_free(ITEM(v) - v2->size, ITEM(v2), v2->size, v2->type_field); v->item -= v2->size; v->size += v2->size; } for(tmp=e+1;tmp<args;tmp++) { v2 = argp[tmp].u.array; debug_malloc_touch(v2); v->type_field |= v2->type_field; assign_svalues_no_free(ITEM(v) + v->size, ITEM(v2), v2->size, v2->type_field); v->size += v2->size; } #ifdef PIKE_DEBUG if(d_flag>1) check_array(v); #endif return v; } if (!v2 || (v->size > v2->size)) { /* Got a potential candidate. * * Optimize for maximum memmove() * (ie minimum assign_svalues_no_free()). */ tmp2 = tmp; v2 = v; e2 = e; } } tmp+=v->size; } if (v2) { debug_malloc_touch(v2); mark_free_svalue(argp + e2); memmove(v2->real_item + tmp2, ITEM(v2), v2->size * sizeof(struct svalue)); v2->item = v2->real_item + tmp2; for(tmp=e2-1;tmp>=0;tmp--) { v = argp[tmp].u.array; debug_malloc_touch(v); v2->type_field |= v->type_field; assign_svalues_no_free(ITEM(v2) - v->size, ITEM(v), v->size, v->type_field); v2->item -= v->size; v2->size += v->size; } for(tmp=e2+1;tmp<args;tmp++) { v = argp[tmp].u.array; debug_malloc_touch(v); v2->type_field |= v->type_field; assign_svalues_no_free(ITEM(v2) + v2->size, ITEM(v), v->size, v->type_field); v2->size += v->size; } #ifdef PIKE_DEBUG if(d_flag>1) check_array(v2); #endif return v2; } } #endif if(args && (v2 = argp[0].u.array)->refs==1) { e = v2->size; v = resize_array(v2, size); mark_free_svalue(argp); size=e; e=1; }else{ v=allocate_array_no_init(size, 0); v->type_field=0; e=size=0; } for(; e<args; e++) { v2 = argp[e].u.array; v->type_field |= v2->type_field; assign_svalues_no_free(ITEM(v)+size, ITEM(v2), v2->size, v2->type_field); size += v2->size; } return v; } PMOD_EXPORT int array_equal_p(struct array *a, struct array *b, struct processing *p) { struct processing curr; INT32 e; if(a == b) return 1; if(a->size != b->size) return 0; if(!a->size) return 1; #ifdef PIKE_DEBUG if(d_flag > 1) { array_check_type_field(a); array_check_type_field(b); } #endif /* This could be done much better if I KNEW that * the type fields didn't contain types that * really aren't in the array */ if(!(a->type_field & b->type_field) && !( (a->type_field | b->type_field) & BIT_OBJECT )) return 0; curr.pointer_a = a; curr.pointer_b = b; curr.next = p; for( ;p ;p=p->next) if(p->pointer_a == (void *)a && p->pointer_b == (void *)b) return 1; for(e=0; e<a->size; e++) if(!low_is_equal(ITEM(a)+e, ITEM(b)+e, &curr)) return 0; return 1; } typedef int(*mycmpfun)(INT32*,INT32*,INT32*,INT32*); #define ID fsort_with_order #define CMP(X,Y) ((*cmpfun)((X),(Y),oa,ob)) #define EXTRA_ARGS ,mycmpfun cmpfun,INT32 *oa,INT32 *ob #define XARGS ,cmpfun,oa,ob #define TYPE INT32 #include "fsort_template.h" #undef ID #undef TYPE #undef XARGS #undef EXTRA_ARGS #undef CMP /** * This is used to rearrange the zipper so that the order is retained * as it was before (check merge_array_with_order below). */ static int array_merge_fun(INT32 *a, INT32 *b, INT32 *ordera, INT32 *orderb) { if(*a<0) { if(*b<0) { return orderb[~*a] - orderb[~*b]; }else{ return 1; } }else{ if(*b<0) { return -1; }else{ return ordera[*a] - ordera[*b]; } } } /** * Merge two arrays and retain their order. This is done by arranging them * into ordered sets, merging them as sets and then rearranging the zipper * before zipping the sets together. */ PMOD_EXPORT struct array *merge_array_with_order(struct array *a, struct array *b, INT32 op) { ONERROR r1,r2,r3,r4,r5; INT32 *zipper; struct array *tmpa,*tmpb,*ret; INT32 *ordera, *orderb; ordera=get_set_order(a); SET_ONERROR(r4,free,ordera); orderb=get_set_order(b); SET_ONERROR(r5,free,orderb); tmpa=reorder_and_copy_array(a,ordera); SET_ONERROR(r1,do_free_array,tmpa); tmpb=reorder_and_copy_array(b,orderb); SET_ONERROR(r2,do_free_array,tmpb); zipper=merge(tmpa,tmpb,op); SET_ONERROR(r3,free,zipper); #if 0 { int i; simple_describe_array (a); simple_describe_array (b); fprintf (stderr, "order a: "); for (i = 0; i < a->size; i++) fprintf (stderr, "%d ", ordera[i]); fprintf (stderr, "\n"); fprintf (stderr, "order b: "); for (i = 0; i < b->size; i++) fprintf (stderr, "%d ", orderb[i]); fprintf (stderr, "\n"); simple_describe_array (tmpa); simple_describe_array (tmpb); fprintf (stderr, "zipper: "); for (i = 1; i < *zipper + 1; i++) fprintf (stderr, "%d ", zipper[i]); fprintf (stderr, "\n"); } #endif fsort_with_order( (zipper+1), zipper+*zipper, array_merge_fun, ordera, orderb ); ret=array_zip(tmpa,tmpb,zipper); UNSET_ONERROR(r3); free(zipper); UNSET_ONERROR(r2); free_array(tmpb); UNSET_ONERROR(r1); free_array(tmpa); UNSET_ONERROR(r5); free(orderb); UNSET_ONERROR(r4); free(ordera); return ret; } #define CMP(X,Y) set_svalue_cmpfun(X,Y) #define TYPE struct svalue #define ID set_sort_svalues #include "fsort_template.h" #undef CMP #undef TYPE #undef ID /** Remove all instances of an svalue from an array */ static struct array *subtract_array_svalue(struct array *a, struct svalue *b) { size_t size = a->size; size_t from=0, to=0; TYPE_FIELD to_type = 1<<TYPEOF(*b); TYPE_FIELD type_field = 0; ONERROR ouch; struct svalue *ip=ITEM(a), *dp=ip; int destructive = 1; if( size == 0 ) return copy_array(a); if( a->refs > 1 ) { /* We only need to do anything if the value exists in the array. */ ptrdiff_t off = fast_array_search( a, b, 0 ); TYPE_FIELD tmp; if( off == -1 ) /* We still need to return a new array. */ return copy_array(a); /* In this case we generate a new array and modify that one. */ destructive = 0; from = (size_t)off; tmp = a->type_field; a = allocate_array_no_init(size-1,0); a->type_field = tmp; SET_ONERROR( ouch, do_free_array, a ); dp = ITEM(a); /* Copy the part of the array that is not modified first.. */ for( to=0; to<from; to++, ip++, dp++) { assign_svalue_no_free(dp, ip); type_field |= 1<<TYPEOF(*dp); } a->size = from; } #define MATCH_COPY(X) do { \ if( X ) \ { /* include entry */ \ type_field|=1<<TYPEOF(*ip); \ if(!destructive) \ assign_svalue_no_free(dp,ip); \ else if(ip!=dp) \ *dp=*ip; \ dp++; \ if( !destructive ) a->size++; \ } \ else if( destructive ) \ free_svalue( ip ); \ } while(0) if( UNSAFE_IS_ZERO( b ) ) { /* Remove 0-valued elements. Rather common, so a special case is motivated. This saves time becase there is no need to check if 'b' is zero for each loop. */ for( ;from<size; from++, ip++ ) MATCH_COPY( !UNSAFE_IS_ZERO(ip) ); } else if((a->type_field & to_type) || ((a->type_field | to_type) & BIT_OBJECT)) { for( ; from<size; from++, ip++ ) MATCH_COPY( !is_eq(ip,b) ); } else /* b does not exist in the array. */ { add_ref(a); return a; } #undef MATCH_COPY if( dp != ip ) { a->type_field = type_field; a->size = dp-ITEM(a); } if( !destructive ) UNSET_ONERROR( ouch ); else add_ref(a); if( a->size ) return a; free_array(a); add_ref(&empty_array); return &empty_array; } /** Subtract an array from another. */ PMOD_EXPORT struct array *subtract_arrays(struct array *a, struct array *b) { #ifdef PIKE_DEBUG if(d_flag > 1) { array_check_type_field(b); } #endif if( b->size == 1 ) return subtract_array_svalue( a, ITEM(b) ); if(b->size && ((a->type_field & b->type_field) || ((a->type_field | b->type_field) & BIT_OBJECT))) { return merge_array_with_order(a, b, PIKE_ARRAY_OP_SUB); }else{ if(a->refs == 1) { add_ref(a); return a; } return copy_array(a); } } /** And two arrays together. */ PMOD_EXPORT struct array *and_arrays(struct array *a, struct array *b) { #ifdef PIKE_DEBUG if(d_flag > 1) array_check_type_field(b); #endif check_array_for_destruct(a); if((a->type_field & b->type_field) || ((a->type_field | b->type_field) & BIT_OBJECT)) return merge_array_with_order(a, b, PIKE_ARRAY_OP_AND_LEFT); else return allocate_array_no_init(0,0); } int array_is_constant(struct array *a, struct processing *p) { return svalues_are_constant(ITEM(a), a->size, array_fix_type_field(a), p); } /* Return true for integers with more than one bit set */ static inline int is_more_than_one_bit(unsigned INT32 x) { return !!(x & (x-1)); } node *make_node_from_array(struct array *a) { struct svalue s; INT32 e; if(!a->size) return mkefuncallnode("aggregate",0); if (a->size == 1) return mkefuncallnode("aggregate", mksvaluenode(ITEM(a))); if(array_fix_type_field(a) == BIT_INT) { debug_malloc_touch(a); for(e=0; e<a->size; e++) if(ITEM(a)[e].u.integer || SUBTYPEOF(ITEM(a)[e])) break; if(e == a->size) { return mkefuncallnode("allocate",mkintnode(a->size)); } } debug_malloc_touch(a); if(!is_more_than_one_bit(a->type_field)) { e=0; debug_malloc_touch(a); switch(a->type_field) { case BIT_INT: for(e=1; e<a->size; e++) if((ITEM(a)[e].u.integer != ITEM(a)[0].u.integer) || (SUBTYPEOF(ITEM(a)[e]) != SUBTYPEOF(ITEM(a)[0]))) { break; } if(e==a->size && ITEM(a)[0].u.integer==0 && !SUBTYPEOF(ITEM(a)[0])) return mkefuncallnode("allocate",mkintnode(a->size)); break; case BIT_STRING: case BIT_PROGRAM: for(e=1; e<a->size; e++) if(ITEM(a)[e].u.refs != ITEM(a)[0].u.refs) break; break; case BIT_OBJECT: case BIT_FUNCTION: for(e=1; e<a->size; e++) if(ITEM(a)[e].u.object != ITEM(a)[0].u.object || SUBTYPEOF(ITEM(a)[e]) != SUBTYPEOF(ITEM(a)[0])) break; break; } debug_malloc_touch(a); if(e == a->size) return mkefuncallnode("allocate",mknode(F_ARG_LIST, mkintnode(a->size), mksvaluenode(ITEM(a)))); } if(array_is_constant(a,0)) { debug_malloc_touch(a); SET_SVAL(s, T_ARRAY, 0, array, a); return mkconstantsvaluenode(&s); }else{ node *ret=0; debug_malloc_touch(a); for(e = a->size; e--;) { if (ret) { ret = mknode(F_ARG_LIST, mksvaluenode(ITEM(a)+e), ret); } else { ret = mksvaluenode(ITEM(a)+e); } } return mkefuncallnode("aggregate",ret); } } /** Push elements of an array onto the stack. The array will be freed. */ PMOD_EXPORT void push_array_items(struct array *a) { check_stack(a->size); check_array_for_destruct(a); if(a->refs == 1) { memcpy(Pike_sp,ITEM(a),sizeof(struct svalue)*a->size); Pike_sp += a->size; a->size=0; free_array(a); }else{ assign_svalues_no_free(Pike_sp, ITEM(a), a->size, a->type_field); Pike_sp += a->size; free_array(a); } } void describe_array_low(struct array *a, struct processing *p, int indent) { INT32 e,d; indent += 2; for(e=0; e<a->size; e++) { if(e) my_strcat(",\n"); for(d=0; d<indent; d++) my_putchar(' '); describe_svalue(ITEM(a)+e,indent,p); } } #ifdef PIKE_DEBUG void simple_describe_array(struct array *a) { dynamic_buffer save_buf; char *s; if (a->size) { init_buf(&save_buf); describe_array_low(a,0,0); s=simple_free_buf(&save_buf); fprintf(stderr,"({\n%s\n})\n",s); free(s); } else fputs ("({ })\n", stderr); } void describe_index(struct array *a, int e, struct processing *p, int indent) { describe_svalue(ITEM(a)+e, indent, p); } #endif void describe_array(struct array *a,struct processing *p,int indent) { struct processing doing; INT32 e; char buf[60]; if(! a->size) { my_strcat("({ })"); return; } doing.next=p; doing.pointer_a=(void *)a; for(e=0;p;e++,p=p->next) { if(p->pointer_a == (void *)a) { sprintf(buf,"@%ld",(long)e); my_strcat(buf); return; } } if (a->size == 1) { sprintf(buf, "({ /* 1 element */\n"); } else { sprintf(buf, "({ /* %ld elements */\n", (long)a->size); } my_strcat(buf); describe_array_low(a,&doing,indent); my_putchar('\n'); for(e=2; e<indent; e++) my_putchar(' '); my_strcat("})"); } /** * Pops a number of arguments off of the stack an puts them in an array. * The 'top' of the stack will be the last element in the array. * @param args The number of arguments to aggregate. */ PMOD_EXPORT struct array *aggregate_array(INT32 args) { struct array *a; a=allocate_array_no_init(args,0); if (args) { memcpy(ITEM(a),Pike_sp-args,args*sizeof(struct svalue)); array_fix_type_field (a); Pike_sp-=args; DO_IF_DMALLOC(while(args--) dmalloc_touch_svalue(Pike_sp + args)); } return a; } /** Add an element to the end of an array by resizing the array. * * @param a the array to be appended * @param s the value to be added to the new element in the array */ PMOD_EXPORT struct array *append_array(struct array *a, struct svalue *s) { INT32 size = a->size; a=resize_array(a, size+1); array_set_index(a, size, s); return a; } /** Automap assignments * This implements X[*] = ...[*].. * Assign elements in a at @level to elements from b at the same @level. * This will not actually modify any of the arrays, only change the * values in them. */ void assign_array_level( struct array *a, struct array *b, int level ) { if( a->size != b->size ) /* this should not really happen. */ Pike_error("Source and destination differs in size in automap?!\n"); if( level > 1 ) { /* recurse. */ INT32 i; for( i=0; i<a->size; i++ ) { if( TYPEOF(a->item[i]) != PIKE_T_ARRAY ) Pike_error("Too many automap levels.\n"); if( TYPEOF(b->item[i]) != PIKE_T_ARRAY ) /* obscure messages much? */ Pike_error("Not enough levels of mapping in RHS\n"); assign_array_level( a->item[i].u.array, b->item[i].u.array, level-1 ); } } else { assign_svalues( a->item, b->item, a->size, a->type_field|b->type_field ); a->type_field = b->type_field; } } /* Assign all elemnts in a at level to b. * This implements X[*] = expression without automap. */ void assign_array_level_value( struct array *a, struct svalue *b, int level ) { INT32 i; if( level > 1 ) { /* recurse. */ for( i=0; i<a->size; i++ ) { if( TYPEOF(a->item[i]) != PIKE_T_ARRAY ) Pike_error("Too many automap levels.\n"); assign_array_level_value( a->item[i].u.array, b, level-1 ); } } else { if( a->type_field & BIT_REF_TYPES ) free_mixed_svalues( a->item, a->size ); if( REFCOUNTED_TYPE(TYPEOF(*b)) ) *b->u.refs+=a->size; for( i=0; i<a->size; i++) a->item[i] = *b; a->type_field = 1 << TYPEOF(*b); } } typedef char *(* explode_searchfunc)(void *,void *,size_t); /** Explode a string into an array by a delimiter. * * @param str the string to be split * @param del the string to split str by * @returns an array containing the elements of the split string */ PMOD_EXPORT struct array *explode(struct pike_string *str, struct pike_string *del) { INT32 e; struct array *ret; char *s, *end, *tmp; #if 0 if(!str->len) { return allocate_array_no_init(0,0); } #endif if(!del->len) { ret=allocate_array_no_init(str->len,0); for(e=0;e<str->len;e++) { SET_SVAL(ITEM(ret)[e], T_STRING, 0, string, string_slice(str,e,1)); } }else{ SearchMojt mojt; ONERROR uwp; explode_searchfunc f = (explode_searchfunc)0; s=str->str; end=s+(str->len << str->size_shift); ret=allocate_array(2); ret->size=0; mojt=compile_memsearcher(MKPCHARP_STR(del), del->len, str->len, del); SET_ONERROR (uwp, do_free_object, mojt.container); switch(str->size_shift) { case 0: f=(explode_searchfunc)mojt.vtab->func0; break; case 1: f=(explode_searchfunc)mojt.vtab->func1; break; case 2: f=(explode_searchfunc)mojt.vtab->func2; break; #ifdef PIKE_DEBUG default: Pike_fatal("Illegal shift.\n"); #endif } while((tmp = f(mojt.data, s, (end-s)>> str->size_shift))) { if(ret->size == ret->malloced_size) { e=ret->size; ACCEPT_UNFINISHED_TYPE_FIELDS { ret=resize_array(ret, e * 2); } END_ACCEPT_UNFINISHED_TYPE_FIELDS; ret->size=e; } SET_SVAL(ITEM(ret)[ret->size], T_STRING, 0, string, string_slice(str, (s-str->str)>>str->size_shift, (tmp-s)>>str->size_shift)); ret->size++; s=tmp+(del->len << str->size_shift); } if(ret->size == ret->malloced_size) { e=ret->size; ACCEPT_UNFINISHED_TYPE_FIELDS { ret=resize_array(ret, e * 2); } END_ACCEPT_UNFINISHED_TYPE_FIELDS; ret->size=e; } SET_SVAL(ITEM(ret)[ret->size], T_STRING, 0, string, string_slice(str, (s-str->str)>>str->size_shift, (end-s)>>str->size_shift)); ret->size++; CALL_AND_UNSET_ONERROR (uwp); } ret->type_field=BIT_STRING; return ret; } /** Implode an array by creating a string with all of the array's * elements separated by a delimiter. * * @param a The array containing elements to be imploded * @param del The delimiter used to separate the array's elements in the resulting string * @return The imploded string * */ PMOD_EXPORT struct pike_string *implode(struct array *a, struct pike_string *del) { INT32 len, e, delims; PCHARP r; struct pike_string *ret; struct svalue *ae; int max_shift = del->size_shift; len=0; delims = 0; for(e=a->size, ae=a->item; e--; ae++) switch(TYPEOF(*ae)) { case T_INT: if(!ae->u.integer) continue; /* skip zero (strings) */ /* FALLTHROUGH */ default: Pike_error("Array element %d is not a string\n", ae-a->item); case T_STRING: delims++; len+=ae->u.string->len + del->len; if(ae->u.string->size_shift > max_shift) max_shift=ae->u.string->size_shift; break; } if(delims) { len-=del->len; delims--; } if( a->size == 1 && TYPEOF(*ITEM(a)) == PIKE_T_STRING ) { struct pike_string * res = ITEM(a)->u.string; res->refs++; return res; } ret=begin_wide_shared_string(len,max_shift); r=MKPCHARP_STR(ret); len = del->len; if((e = a->size)) for(ae=a->item;e--;ae++) { if (TYPEOF(*ae) == T_STRING) { struct pike_string *tmp = ae->u.string; pike_string_cpy(r,tmp); INC_PCHARP(r,tmp->len); if(len && delims) { delims--; pike_string_cpy(r,del); INC_PCHARP(r,len); } } } return low_end_shared_string(ret); } /** Deeply copy an array. The mapping is used for temporary storage. */ PMOD_EXPORT struct array *copy_array_recursively(struct array *a, struct mapping *m) { struct array *ret; struct svalue aa, bb; #ifdef PIKE_DEBUG if(d_flag > 1) array_check_type_field(a); #endif if (!a->size) { ret = (a->flags & ARRAY_WEAK_FLAG) ? &weak_empty_array : &empty_array; add_ref(ret); return ret; } ret=allocate_array_no_init(a->size,0); if (m) { SET_SVAL(aa, T_ARRAY, 0, array, a); SET_SVAL(bb, T_ARRAY, 0, array, ret); low_mapping_insert(m, &aa, &bb, 1); } ret->flags = a->flags & ~ARRAY_LVALUE; copy_svalues_recursively_no_free(ITEM(ret),ITEM(a),a->size,m); ret->type_field=a->type_field; return ret; } /** Apply the elements of an array. Arguments the array should be * applied with should be on the stack before the call and the * resulting array will be on the stack after the call. * * Note that the array a may be modified destructively if it has * only a single reference. */ PMOD_EXPORT void apply_array(struct array *a, INT32 args, int flags) { INT32 e, hash = 0; struct svalue *argp = Pike_sp-args; struct array *cycl; DECLARE_CYCLIC(); check_stack(args); check_array_for_destruct(a); for (e=0; e<args; e++) hash = hash * 33 + DO_NOT_WARN ((INT32) PTR_TO_INT (Pike_sp[-e-1].u.ptr)); if (!(cycl = (struct array *)BEGIN_CYCLIC(a, (ptrdiff_t)hash))) { TYPE_FIELD new_types = 0; struct array *aa; if ((flags & 1) && (a->refs == 1)) { /* Destructive operation possible. */ add_ref(aa = a); aa->type_field |= BIT_UNFINISHED; } else { aa = allocate_array(a->size); } SET_CYCLIC_RET(aa); push_array(aa); for (e=0; e < a->size; e++) { assign_svalues_no_free(Pike_sp, argp, args, BIT_MIXED); Pike_sp+=args; /* FIXME: Don't throw apply errors from apply_svalue here. */ apply_svalue(ITEM(a)+e, args); new_types |= 1 << TYPEOF(Pike_sp[-1]); assign_svalue(ITEM(aa)+e, &Pike_sp[-1]); pop_stack(); } aa->type_field = new_types; #ifdef PIKE_DEBUG array_check_type_field(aa); #endif stack_pop_n_elems_keep_top(args); } else { pop_n_elems(args); ref_push_array(cycl); } END_CYCLIC(); } /** Reverse the elements in an array. If the array has more than one * reference, the array will be reversed into a new array. Otherwise * the array will be destructively reversed in place. */ PMOD_EXPORT struct array *reverse_array(struct array *a, int start, int end) { INT32 e; struct array *ret; if ((end <= start) || (start >= a->size)) { add_ref(a); return a; } if (end >= a->size) { end = a->size; } else { end++; } if(a->refs == 1) /* Reverse in-place. */ { struct svalue *tmp0, *tmp1, swap; tmp0 = ITEM(a) + start; tmp1 = ITEM(a) + end; while (tmp0 < tmp1) { swap = *tmp0; *(tmp0++) = *(--tmp1); *tmp1 = swap; } /* FIXME: What about the flags field? */ add_ref(a); return a; } /* fprintf(stderr, "R"); */ ret=allocate_array_no_init(a->size,0); for(e=0;e<start;e++) assign_svalue_no_free(ITEM(ret)+e,ITEM(a)+e); for(;e<end;e++) assign_svalue_no_free(ITEM(ret)+e,ITEM(a)+end+~e-start); for(;e<a->size;e++) assign_svalue_no_free(ITEM(ret)+e,ITEM(a)+e); ret->type_field = a->type_field; return ret; } /** Replaces all from elements in array a with to elements. Called * from replaces when first argument is an array. The replace is applied * desctructivly. */ void array_replace(struct array *a, struct svalue *from, struct svalue *to) { ptrdiff_t i = -1; check_array_for_destruct(a); while((i=fast_array_search(a,from,i+1)) >= 0) array_set_index(a,i,to); } #ifdef PIKE_DEBUG PMOD_EXPORT void check_array(struct array *a) { INT32 e; if(a->next && a->next->prev != a) Pike_fatal("array->next->prev != array.\n"); if(a->prev) { if(a->prev->next != a) Pike_fatal("array->prev->next != array.\n"); }else{ if(first_array != a) Pike_fatal("array->prev == 0 but first_array != array.\n"); } if(a->size > a->malloced_size) Pike_fatal("Array is larger than malloced block!\n"); if(a->size < 0) Pike_fatal("Array size is negative!\n"); if(a->malloced_size < 0) Pike_fatal("Array malloced size is negative!\n"); if((a->item + a->size) > (a->real_item + a->malloced_size)) Pike_fatal("Array uses memory outside of the malloced block!\n"); if(a->item < a->real_item) { #ifdef DEBUG_MALLOC describe(a); #endif Pike_fatal("Array item pointer is too small!\n"); } if(a->refs <=0 ) Pike_fatal("Array has zero refs.\n"); for(e=0;e<a->size;e++) { if(! ( (1 << TYPEOF(ITEM(a)[e])) & (a->type_field) ) && TYPEOF(ITEM(a)[e])<16) Pike_fatal("Type field lies.\n"); check_svalue(ITEM(a)+e); } } void check_all_arrays(void) { struct array *a; for (a = first_array; a; a = a->next) check_array(a); } #endif /* PIKE_DEBUG */ PMOD_EXPORT void visit_array (struct array *a, int action, void *extra) { visit_enter(a, T_ARRAY, extra); switch (action & VISIT_MODE_MASK) { #ifdef PIKE_DEBUG default: Pike_fatal ("Unknown visit action %d.\n", action); case VISIT_NORMAL: case VISIT_COMPLEX_ONLY: break; #endif case VISIT_COUNT_BYTES: mc_counted_bytes += sizeof (struct array) + (a->malloced_size - 1) * sizeof (struct svalue); break; } if (!(action & VISIT_NO_REFS) && a->type_field & (action & VISIT_COMPLEX_ONLY ? BIT_COMPLEX : BIT_REF_TYPES)) { size_t e, s = a->size; int ref_type = a->flags & ARRAY_WEAK_FLAG ? REF_TYPE_WEAK : REF_TYPE_NORMAL; for (e = 0; e < s; e++) visit_svalue (ITEM (a) + e, ref_type, extra); } visit_leave(a, T_ARRAY, extra); } static void gc_check_array(struct array *a) { GC_ENTER (a, T_ARRAY) { if(a->type_field & BIT_COMPLEX) { if (a->flags & ARRAY_WEAK_FLAG) { gc_check_weak_svalues(ITEM(a), a->size); gc_checked_as_weak(a); } else gc_check_svalues(ITEM(a), a->size); } } GC_LEAVE; } void gc_mark_array_as_referenced(struct array *a) { if(gc_mark(a, T_ARRAY)) GC_ENTER (a, T_ARRAY) { if (a == gc_mark_array_pos) gc_mark_array_pos = a->next; if (a == gc_internal_array) gc_internal_array = a->next; else { DOUBLEUNLINK (first_array, a); DOUBLELINK (first_array, a); /* Linked in first. */ } if (a->type_field & BIT_COMPLEX) { if (a->flags & ARRAY_WEAK_FLAG) { TYPE_FIELD t; if (!(t = gc_mark_weak_svalues(a->item, a->size))) t = a->type_field; /* Ugly, but we are not allowed to change type_field * at the same time as the array is being built... * Actually we just need better primitives for building arrays. */ if(!(a->type_field & BIT_UNFINISHED) || a->refs!=1) a->type_field = t; else a->type_field |= t; /* There might be an additional BIT_INT. */ gc_assert_checked_as_weak(a); } else { TYPE_FIELD t; if ((t = gc_mark_svalues(ITEM(a), a->size))) { if(!(a->type_field & BIT_UNFINISHED) || a->refs!=1) a->type_field = t; else a->type_field |= t; } gc_assert_checked_as_nonweak(a); } } } GC_LEAVE; } void real_gc_cycle_check_array(struct array *a, int weak) { GC_CYCLE_ENTER(a, T_ARRAY, weak) { #ifdef PIKE_DEBUG if (!gc_destruct_everything && (a == &empty_array || a == &weak_empty_array)) Pike_fatal("Trying to gc cycle check some *_empty_array.\n"); #endif if (a->type_field & BIT_COMPLEX) { TYPE_FIELD t = a->flags & ARRAY_WEAK_FLAG ? gc_cycle_check_weak_svalues(ITEM(a), a->size) : gc_cycle_check_svalues(ITEM(a), a->size); if (t) { /* In the weak case we should only get here if references to * destructed objects are removed. */ if(!(a->type_field & BIT_UNFINISHED) || a->refs!=1) a->type_field = t; else a->type_field |= t; } #ifdef PIKE_DEBUG if (a->flags & ARRAY_WEAK_FLAG) gc_assert_checked_as_weak(a); else gc_assert_checked_as_nonweak(a); #endif } } GC_CYCLE_LEAVE; } unsigned gc_touch_all_arrays(void) { unsigned n = 0; struct array *a; if (!first_array || first_array->prev) Pike_fatal ("error in array link list.\n"); for (a = first_array; a; a = a->next) { debug_gc_touch(a); n++; if (a->next && a->next->prev != a) Pike_fatal("Error in array link list.\n"); } return n; } void gc_check_all_arrays(void) { struct array *a; for (a = first_array; a; a = a->next) { #ifdef PIKE_DEBUG if(d_flag > 1) array_check_type_field(a); #endif gc_check_array(a); } } void gc_mark_all_arrays(void) { gc_mark_array_pos = gc_internal_array; while (gc_mark_array_pos) { struct array *a = gc_mark_array_pos; gc_mark_array_pos = a->next; if(gc_is_referenced(a)) gc_mark_array_as_referenced(a); } } void gc_cycle_check_all_arrays(void) { struct array *a; for (a = gc_internal_array; a; a = a->next) { real_gc_cycle_check_array(a, 0); gc_cycle_run_queue(); } } void gc_zap_ext_weak_refs_in_arrays(void) { gc_mark_array_pos = first_array; while (gc_mark_array_pos != gc_internal_array && gc_ext_weak_refs) { struct array *a = gc_mark_array_pos; gc_mark_array_pos = a->next; gc_mark_array_as_referenced(a); } gc_mark_discard_queue(); } size_t gc_free_all_unreferenced_arrays(void) { struct array *a,*next; size_t unreferenced = 0; for (a = gc_internal_array; a; a = next) { #ifdef PIKE_DEBUG if (!a) Pike_fatal("Null pointer in array list.\n"); #endif if(gc_do_free(a)) { /* Got an extra ref from gc_cycle_pop(). */ free_svalues(ITEM(a), a->size, a->type_field); a->size=0; gc_free_extra_ref(a); SET_NEXT_AND_FREE(a, free_array); } else { next=a->next; } unreferenced++; } return unreferenced; } #ifdef PIKE_DEBUG void debug_dump_type_field(TYPE_FIELD t) { int e; for(e=0;e<=MAX_TYPE;e++) if(t & (1<<e)) fprintf(stderr," %s",get_name_of_type(e)); for(;e<16;e++) if(t & (1<<e)) fprintf(stderr," <%d>",e); } void debug_dump_array(struct array *a) { fprintf(stderr,"Location=%p Refs=%d, next=%p, prev=%p, " "flags=0x%x, size=%d, malloced_size=%d%s\n", a, a->refs, a->next, a->prev, a->flags, a->size, a->malloced_size, a == &empty_array ? " (the empty_array)" : a == &weak_empty_array ? " (the weak_empty_array)" : ""); fprintf(stderr,"Type field ="); debug_dump_type_field(a->type_field); fprintf(stderr,"\n"); simple_describe_array(a); } #endif /** Returns (by argument) the number of arrays and the total amount of * memory allocated for arrays (array structs + svalues). Called from * _memory_usage, which is exposed through Debug.memory_usage(). */ void count_memory_in_arrays(size_t *num_, size_t *size_) { size_t num=0, size=0; struct array *m; for(m=first_array;m;m=m->next) { num++; size+=sizeof(struct array)+ sizeof(struct svalue) * (m->malloced_size - 1); } *num_=num; *size_=size; } /** Segments an array into several elements in an array based on the * sequence in the second array argument. This function is called * when an array is divided by another array. Pike level example, ({ * "hello", " ", "world", "!" }) / ({ " " }) -> ({ ({ "hello" }), ({ * "world", "!" }) }) */ PMOD_EXPORT struct array *explode_array(struct array *a, struct array *b) { INT32 e,d,start; struct array *tmp; start=0; #if 0 if(!a->size) { return allocate_array_no_init(0,0); } #endif if(b->size) { BEGIN_AGGREGATE_ARRAY(1) { for(e=0;e<=a->size - b->size;e++) { for(d=0;d<b->size;d++) { if(!is_eq(ITEM(a)+(e+d),ITEM(b)+d)) break; } if(d==b->size) { check_stack(1); push_array(friendly_slice_array(a, start, e)); DO_AGGREGATE_ARRAY(120); e+=b->size-1; start=e+1; } } check_stack(1); push_array(friendly_slice_array(a, start, a->size)); } END_AGGREGATE_ARRAY; }else{ check_stack(120); BEGIN_AGGREGATE_ARRAY(a->size) { for(e=0;e<a->size;e++) { push_array(friendly_slice_array(a, e, e+1)); DO_AGGREGATE_ARRAY(120); } } END_AGGREGATE_ARRAY; } tmp=(--Pike_sp)->u.array; debug_malloc_touch(tmp); if(tmp->size) tmp->type_field=BIT_ARRAY; return tmp; } /** Joins array elements of an array into a new array with the * elements of the second array as joiners. Performs the opposite * action from explode_array and is called when an array is * multiplied by another array. */ PMOD_EXPORT struct array *implode_array(struct array *a, struct array *b) { INT32 e, size; struct array *ret; if (!a->size) { add_ref(a); return a; } size=0; for(e=0;e<a->size;e++) { if(TYPEOF(ITEM(a)[e]) != T_ARRAY) Pike_error("Implode array contains non-arrays.\n"); size+=ITEM(a)[e].u.array->size; } ret=allocate_array((a->size -1) * b->size + size); size=0; ret->type_field=0; for(e=0;e<a->size;e++) { if(e) { ret->type_field|=b->type_field; assign_svalues_no_free(ITEM(ret)+size, ITEM(b), b->size, b->type_field); size+=b->size; } ret->type_field|=ITEM(a)[e].u.array->type_field; assign_svalues_no_free(ITEM(ret)+size, ITEM(ITEM(a)[e].u.array), ITEM(a)[e].u.array->size, ITEM(a)[e].u.array->type_field); size+=ITEM(a)[e].u.array->size; } #ifdef PIKE_DEBUG if(size != ret->size) Pike_fatal("Implode_array failed miserably (%d != %d)\n", size, ret->size); #endif return ret; }