nettle.texinfo 99.5 KB
Newer Older
Niels Möller's avatar
Niels Möller committed
1
2
3
\input texinfo          @c -*-texinfo-*-
@c %**start of header
@setfilename nettle.info
4
@settitle Nettle: a low-level cryptographic library
5
@documentencoding ISO-8859-1
6
@footnotestyle separate
Niels Möller's avatar
Niels Möller committed
7
@syncodeindex fn cp
8
@c %**end of header
Niels Möller's avatar
Niels Möller committed
9

10
@set UPDATED-FOR 2.0
Niels Möller's avatar
Niels Möller committed
11
@set AUTHOR Niels Möller
12

13
14
15
@copying
This manual is for the Nettle library (version @value{UPDATED-FOR}), a
low-level cryptographic library.
Niels Möller's avatar
Niels Möller committed
16

17
Originally written 2001 by @value{AUTHOR}, updated 2009.
Niels Möller's avatar
Niels Möller committed
18

19
@quotation
20
21
22
This manual is placed in the public domain. You may freely copy it, in
whole or in part, with or without modification. Attribution is
appreciated, but not required.
23
24
@end quotation
@end copying
Niels Möller's avatar
Niels Möller committed
25
26
27
28
29
30
31

@titlepage
@title Nettle Manual
@subtitle For the Nettle Library version @value{UPDATED-FOR}
@author @value{AUTHOR}
@page
@vskip 0pt plus 1filll
32
@insertcopying
Niels Möller's avatar
Niels Möller committed
33
34
@end titlepage

35
36
37
38
39
@dircategory Encryption
@direntry
* Nettle: (nettle).             A low-level cryptographic library.
@end direntry

40
41
@contents

Niels Möller's avatar
Niels Möller committed
42
43
44
@ifnottex
@node     Top, Introduction, (dir), (dir)
@comment  node-name,  next,  previous,  up
45
@top Nettle
Niels Möller's avatar
Niels Möller committed
46

47
48
49
This document describes the Nettle low-level cryptographic library. You
can use the library directly from your C programs, or write or use an
object-oriented wrapper for your favorite language or application.
Niels Möller's avatar
Niels Möller committed
50

51
@insertcopying
Niels Möller's avatar
Niels Möller committed
52
53

@menu
Niels Möller's avatar
Niels Möller committed
54
55
* Introduction::                What is Nettle?
* Copyright::                   Your rights.
56
57
58
* Conventions::                 General interface conventions.
* Example::                     An example program.
* Linking::                     
Niels Möller's avatar
Niels Möller committed
59
60
61
* Reference::                   All Nettle functions and features.
* Nettle soup::                 For the serious nettle hacker.
* Installation::                How to install Nettle.
62
* Index::                       Function and concept index.
Niels Möller's avatar
Niels Möller committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
@end menu

@end ifnottex

@node Introduction, Copyright, Top, Top
@comment  node-name,  next,  previous,  up
@chapter Introduction

Nettle is a cryptographic library that is designed to fit easily in more
or less any context: In crypto toolkits for object-oriented languages
(C++, Python, Pike, ...), in applications like LSH or GNUPG, or even in
kernel space. In most contexts, you need more than the basic
cryptographic algorithms, you also need some way to keep track of available
algorithms, their properties and variants. You often have some algorithm
selection process, often dictated by a protocol you want to implement.

79
And as the requirements of applications differ in subtle and not so
Niels Möller's avatar
Niels Möller committed
80
81
82
83
84
85
86
87
88
89
subtle ways, an API that fits one application well can be a pain to use
in a different context. And that is why there are so many different
cryptographic libraries around.

Nettle tries to avoid this problem by doing one thing, the low-level
crypto stuff, and providing a @emph{simple} but general interface to it.
In particular, Nettle doesn't do algorithm selection. It doesn't do
memory allocation. It doesn't do any I/O.

The idea is that one can build several application and context specific
Niels Möller's avatar
Niels Möller committed
90
interfaces on top of Nettle, and share the code, test cases, benchmarks,
Niels Möller's avatar
Niels Möller committed
91
92
93
documentation, etc. Examples are the Nettle module for the Pike
language, and LSH, which both use an object-oriented abstraction on top
of the library.
Niels Möller's avatar
Niels Möller committed
94

95
96
97
98
This manual explains how to use the Nettle library. It also tries to
provide some background on the cryptography, and advice on how to best
put it to use.

Niels Möller's avatar
Niels Möller committed
99
100
101
102
@node Copyright, Conventions, Introduction, Top
@comment  node-name,  next,  previous,  up
@chapter Copyright

103
104
105
106
107
108
109
110
Nettle is distributed under the GNU General Public License (GPL) (see
the file COPYING for details). However, most of the individual files
are dual licensed under less restrictive licenses like the GNU Lesser
General Public License (LGPL), or are in the public domain. This means
that if you don't use the parts of nettle that are GPL-only, you have
the option to use the Nettle library just as if it were licensed under
the LGPL. To find the current status of particular files, you have to
read the copyright notices at the top of the files.
Niels Möller's avatar
Niels Möller committed
111
112
113
114
115
116

A list of the supported algorithms, their origins and licenses:

@table @emph
@item AES
The implementation of the AES cipher (also known as rijndael) is written
117
118
119
by Rafael Sevilla. Assembler for x86 by Rafael Sevilla and
@value{AUTHOR}, Sparc assembler by @value{AUTHOR}. Released under the
LGPL.
Niels Möller's avatar
Niels Möller committed
120
121
122

@item ARCFOUR
The implementation of the ARCFOUR (also known as RC4) cipher is written
123
by @value{AUTHOR}. Released under the LGPL.
Niels Möller's avatar
Niels Möller committed
124

Niels Möller's avatar
Niels Möller committed
125
126
127
128
129
@item ARCTWO
The implementation of the ARCTWO (also known as RC2) cipher is written
by Nikos Mavroyanopoulos and modified by Werner Koch and Simon
Josefsson. Released under the LGPL.

Niels Möller's avatar
Niels Möller committed
130
131
132
@item BLOWFISH
The implementation of the BLOWFISH cipher is written by Werner Koch,
copyright owned by the Free Software Foundation. Also hacked by Ray
133
Dassen and @value{AUTHOR}. Released under the GPL.
Niels Möller's avatar
Niels Möller committed
134
135
136
137
138
139
140
141
142

@item CAST128
The implementation of the CAST128 cipher is written by Steve Reid.
Released into the public domain.

@item DES
The implementation of the DES cipher is written by Dana L. How, and
released under the LGPL.

143
144
@item MD2
The implementation of MD2 is written by Andrew Kuchling, and hacked
145
some by Andreas Sigfridsson and @value{AUTHOR}. Python Cryptography
146
147
148
149
150
151
Toolkit license (essentially public domain).

@item MD4
This is almost the same code as for MD5 below, with modifications by
Marcus Comstedt. Released into the public domain.

Niels Möller's avatar
Niels Möller committed
152
153
@item MD5
The implementation of the MD5 message digest is written by Colin Plumb.
154
It has been hacked some more by Andrew Kuchling and @value{AUTHOR}.
Niels Möller's avatar
Niels Möller committed
155
156
157
158
159
Released into the public domain.

@item SERPENT
The implementation of the SERPENT cipher is written by Ross Anderson,
Eli Biham, and Lars Knudsen, adapted to LSH by Rafael Sevilla, and to
160
Nettle by @value{AUTHOR}. Released under the GPL.
Niels Möller's avatar
Niels Möller committed
161
162

@item SHA1
163
164
165
166
The C implementation of the SHA1 message digest is written by Peter
Gutmann, and hacked some more by Andrew Kuchling and @value{AUTHOR}.
Released into the public domain. Assembler for x86 by @value{AUTHOR},
released under the LGPL.
Niels Möller's avatar
Niels Möller committed
167

Niels Möller's avatar
Niels Möller committed
168
169
170
171
@item SHA256
Written by @value{AUTHOR}, using Peter Gutmann's SHA1 code as a model. 
Released under the LGPL.

Niels Möller's avatar
Niels Möller committed
172
173
174
@item TWOFISH
The implementation of the TWOFISH cipher is written by Ruud de Rooij.
Released under the LGPL.
Niels Möller's avatar
Niels Möller committed
175
176
177
178
179
180
181
182

@item RSA
Written by @value{AUTHOR}, released under the LGPL. Uses the GMP library
for bignum operations.

@item DSA
Written by @value{AUTHOR}, released under the LGPL. Uses the GMP library
for bignum operations.
Niels Möller's avatar
Niels Möller committed
183
184
185
186
187
188
189
190
@end table

@node Conventions, Example, Copyright, Top
@comment  node-name,  next,  previous,  up
@chapter Conventions

For each supported algorithm, there is an include file that defines a
@emph{context struct}, a few constants, and declares functions for
191
operating on the context. The context struct encapsulates all information
Niels Möller's avatar
Niels Möller committed
192
193
194
needed by the algorithm, and it can be copied or moved in memory with no
unexpected effects.

195
196
For consistency, functions for different algorithms are very similar,
but there are some differences, for instance reflecting if the key setup
197
or encryption function differ for encryption and decryption, and whether
198
199
200
201
202
or not key setup can fail. There are also differences between algorithms
that don't show in function prototypes, but which the application must
nevertheless be aware of. There is no big difference between the
functions for stream ciphers and for block ciphers, although they should
be used quite differently by the application.
Niels Möller's avatar
Niels Möller committed
203
204
205
206
207
208
209
210
211
212
213

If your application uses more than one algorithm, you should probably
create an interface that is tailor-made for your needs, and then write a
few lines of glue code on top of Nettle.

By convention, for an algorithm named @code{foo}, the struct tag for the
context struct is @code{foo_ctx}, constants and functions uses prefixes
like @code{FOO_BLOCK_SIZE} (a constant) and @code{foo_set_key} (a
function).

In all functions, strings are represented with an explicit length, of
214
type @code{unsigned}, and a pointer of type @code{uint8_t *} or
Niels Möller's avatar
Niels Möller committed
215
216
217
218
@code{const uint8_t *}. For functions that transform one string to
another, the argument order is length, destination pointer and source
pointer. Source and destination areas are of the same length. Source and
destination may be the same, so that you can process strings in place,
219
but they @emph{must not} overlap in any other way.
Niels Möller's avatar
Niels Möller committed
220

221
222
@c FIXME: Say something about the name mangling.

223
@node Example, Linking, Conventions, Top
Niels Möller's avatar
Niels Möller committed
224
225
226
@comment  node-name,  next,  previous,  up
@chapter Example

227
228
229
A simple example program that reads a file from standard input and
writes its SHA1 checksum on standard output should give the flavor of
Nettle.
Niels Möller's avatar
Niels Möller committed
230
231

@example
232
@verbatiminclude sha-example.c
Niels Möller's avatar
Niels Möller committed
233
234
@end example

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
On a typical Unix system, this program can be compiled and linked with
the command line 
@example
cc sha-example.c -o sha-example -lnettle
@end example

@node Linking, Reference, Example, Top
@comment  node-name,  next,  previous,  up
@chapter Linking

Nettle actually consists of two libraries, @file{libnettle} and
@file{libhogweed}. The @file{libhogweed} library contains those
functions of Nettle that uses bignum operations, and depends on the GMP
library. With this division, linking works the same for both static and
dynamic libraries.

If an application uses only the symmetric crypto algorithms of
Nettle (i.e., block ciphers, hash functions, and the like), it's
sufficient to link with @code{-lnettle}. If an application also uses
public-key algorithms, it must be linked with @code{-lhogweed -lnettle
-lgmp}.

@node Reference, Nettle soup, Linking, Top
Niels Möller's avatar
Niels Möller committed
258
259
260
261
262
263
264
265
@comment  node-name,  next,  previous,  up
@chapter Reference

This chapter describes all the Nettle functions, grouped by family.

@menu
* Hash functions::              
* Cipher functions::            
266
* Cipher modes::                
Niels Möller's avatar
Niels Möller committed
267
* Keyed hash functions::        
268
269
* Public-key algorithms::       
* Randomness::                  
Niels Möller's avatar
Niels Möller committed
270
* Miscellaneous functions::     
271
* Compatibility functions::     
Niels Möller's avatar
Niels Möller committed
272
273
274
275
276
@end menu

@node Hash functions, Cipher functions, Reference, Reference
@comment  node-name,  next,  previous,  up
@section Hash functions
277
@cindex Hash function
Niels Möller's avatar
Niels Möller committed
278
279
280
281
282
283
284
285
286
287
A cryptographic @dfn{hash function} is a function that takes variable
size strings, and maps them to strings of fixed, short, length. There
are naturally lots of collisions, as there are more possible 1MB files
than 20 byte strings. But the function is constructed such that is hard
to find the collisions. More precisely, a cryptographic hash function
@code{H} should have the following properties:

@table @emph

@item One-way
288
@cindex One-way
Niels Möller's avatar
Niels Möller committed
289
290
291
292
Given a hash value @code{H(x)} it is hard to find a string @code{x}
that hashes to that value.

@item Collision-resistant
293
@cindex Collision-resistant
Niels Möller's avatar
Niels Möller committed
294
295
296
297
298
299
It is hard to find two different strings, @code{x} and @code{y}, such
that @code{H(x)} = @code{H(y)}.

@end table

Hash functions are useful as building blocks for digital signatures,
300
message authentication codes, pseudo random generators, association of
Niels Möller's avatar
Niels Möller committed
301
302
unique id:s to documents, and many other things.

Niels Möller's avatar
Niels Möller committed
303
304
305
306
307
308
The most commonly used hash functions are MD5 and SHA1. Unfortunately,
both these fail the collision-resistance requirement; cryptologists have
found ways to construct colliding inputs. The recommended hash function
for new applications is SHA256, even though it uses a structure similar
to MD5 and SHA1. Constructing better hash functions is an urgent research
problem.
309

Niels Möller's avatar
Niels Möller committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
@subsection @acronym{MD5}

MD5 is a message digest function constructed by Ronald Rivest, and
described in @cite{RFC 1321}. It outputs message digests of 128 bits, or
16 octets. Nettle defines MD5 in @file{<nettle/md5.h>}.

@deftp {Context struct} {struct md5_ctx}
@end deftp

@defvr Constant MD5_DIGEST_SIZE
The size of an MD5 digest, i.e. 16.
@end defvr

@defvr Constant MD5_DATA_SIZE
The internal block size of MD5. Useful for some special constructions,
in particular HMAC-MD5.
@end defvr

@deftypefun void md5_init (struct md5_ctx *@var{ctx})
Initialize the MD5 state.
@end deftypefun

@deftypefun void md5_update (struct md5_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{data})
Hash some more data.
@end deftypefun

@deftypefun void md5_digest (struct md5_ctx *@var{ctx}, unsigned @var{length}, uint8_t *@var{digest})
337
338
339
340
Performs final processing and extracts the message digest, writing it
to @var{digest}. @var{length} may be smaller than
@code{MD5_DIGEST_SIZE}, in which case only the first @var{length}
octets of the digest are written.
Niels Möller's avatar
Niels Möller committed
341

342
343
This function also resets the context in the same way as
@code{md5_init}.
Niels Möller's avatar
Niels Möller committed
344
345
346
@end deftypefun

The normal way to use MD5 is to call the functions in order: First
347
348
349
350
@code{md5_init}, then @code{md5_update} zero or more times, and finally
@code{md5_digest}. After @code{md5_digest}, the context is reset to
its initial state, so you can start over calling @code{md5_update} to
hash new data.
Niels Möller's avatar
Niels Möller committed
351
352
353

To start over, you can call @code{md5_init} at any time.

354
355
@subsection @acronym{MD2}

Niels Möller's avatar
Niels Möller committed
356
MD2 is another hash function of Ronald Rivest's, described in
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
@cite{RFC 1319}. It outputs message digests of 128 bits, or 16 octets.
Nettle defines MD2 in @file{<nettle/md2.h>}.

@deftp {Context struct} {struct md2_ctx}
@end deftp

@defvr Constant MD2_DIGEST_SIZE
The size of an MD2 digest, i.e. 16.
@end defvr

@defvr Constant MD2_DATA_SIZE
The internal block size of MD2.
@end defvr

@deftypefun void md2_init (struct md2_ctx *@var{ctx})
Initialize the MD2 state.
@end deftypefun

@deftypefun void md2_update (struct md2_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{data})
Hash some more data.
@end deftypefun

@deftypefun void md2_digest (struct md2_ctx *@var{ctx}, unsigned @var{length}, uint8_t *@var{digest})
Performs final processing and extracts the message digest, writing it
to @var{digest}. @var{length} may be smaller than
@code{MD2_DIGEST_SIZE}, in which case only the first @var{length}
octets of the digest are written.

This function also resets the context in the same way as
@code{md2_init}.
@end deftypefun

@subsection @acronym{MD4}

Niels Möller's avatar
Niels Möller committed
391
392
393
394
395
MD4 is a predecessor of MD5, described in @cite{RFC 1320}. Like MD5, it
is constructed by Ronald Rivest. It outputs message digests of 128 bits,
or 16 octets. Nettle defines MD4 in @file{<nettle/md4.h>}. Use of MD4 is
not recommended, but it is sometimes needed for compatibility with
existing applications and protocols.
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

@deftp {Context struct} {struct md4_ctx}
@end deftp

@defvr Constant MD4_DIGEST_SIZE
The size of an MD4 digest, i.e. 16.
@end defvr

@defvr Constant MD4_DATA_SIZE
The internal block size of MD4.
@end defvr

@deftypefun void md4_init (struct md4_ctx *@var{ctx})
Initialize the MD4 state.
@end deftypefun

@deftypefun void md4_update (struct md4_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{data})
Hash some more data.
@end deftypefun

@deftypefun void md4_digest (struct md4_ctx *@var{ctx}, unsigned @var{length}, uint8_t *@var{digest})
Performs final processing and extracts the message digest, writing it
to @var{digest}. @var{length} may be smaller than
@code{MD4_DIGEST_SIZE}, in which case only the first @var{length}
octets of the digest are written.

This function also resets the context in the same way as
@code{md4_init}.
@end deftypefun

Niels Möller's avatar
Niels Möller committed
426
427
428
@subsection @acronym{SHA1}

SHA1 is a hash function specified by @dfn{NIST} (The U.S. National Institute
429
430
for Standards and Technology). It outputs hash values of 160 bits, or 20
octets. Nettle defines SHA1 in @file{<nettle/sha.h>}.
Niels Möller's avatar
Niels Möller committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

The functions are analogous to the MD5 ones.

@deftp {Context struct} {struct sha1_ctx}
@end deftp

@defvr Constant SHA1_DIGEST_SIZE
The size of an SHA1 digest, i.e. 20.
@end defvr

@defvr Constant SHA1_DATA_SIZE
The internal block size of SHA1. Useful for some special constructions,
in particular HMAC-SHA1.
@end defvr

@deftypefun void sha1_init (struct sha1_ctx *@var{ctx})
Initialize the SHA1 state.
@end deftypefun

@deftypefun void sha1_update (struct sha1_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{data})
Hash some more data.
@end deftypefun

454
455
456
457
458
459
460
461
@deftypefun void sha1_digest (struct sha1_ctx *@var{ctx}, unsigned @var{length}, uint8_t *@var{digest})
Performs final processing and extracts the message digest, writing it
to @var{digest}. @var{length} may be smaller than
@code{SHA1_DIGEST_SIZE}, in which case only the first @var{length}
octets of the digest are written.

This function also resets the context in the same way as
@code{sha1_init}.
Niels Möller's avatar
Niels Möller committed
462
463
@end deftypefun

464
465
466
467
468
469
470
471
472
473
474
475
476
@subsection @acronym{SHA256}

SHA256 is another hash function specified by @dfn{NIST}, intended as a
replacement for @acronym{SHA1}, generating larger digests. It outputs
hash values of 256 bits, or 32 octets. Nettle defines SHA256 in
@file{<nettle/sha.h>}.

The functions are analogous to the MD5 ones.

@deftp {Context struct} {struct sha256_ctx}
@end deftp

@defvr Constant SHA256_DIGEST_SIZE
477
The size of an SHA256 digest, i.e. 32.
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
@end defvr

@defvr Constant SHA256_DATA_SIZE
The internal block size of SHA256. Useful for some special constructions,
in particular HMAC-SHA256.
@end defvr

@deftypefun void sha256_init (struct sha256_ctx *@var{ctx})
Initialize the SHA256 state.
@end deftypefun

@deftypefun void sha256_update (struct sha256_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{data})
Hash some more data.
@end deftypefun

@deftypefun void sha256_digest (struct sha256_ctx *@var{ctx}, unsigned @var{length}, uint8_t *@var{digest})
Performs final processing and extracts the message digest, writing it
to @var{digest}. @var{length} may be smaller than
@code{SHA256_DIGEST_SIZE}, in which case only the first @var{length}
octets of the digest are written.
Niels Möller's avatar
Niels Möller committed
498

499
500
This function also resets the context in the same way as
@code{sha256_init}.
Niels Möller's avatar
Niels Möller committed
501
502
@end deftypefun

Niels Möller's avatar
Niels Möller committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
@subsection @code{struct nettle_hash}

Nettle includes a struct including information about the supported hash
functions. It is defined in @file{<nettle/nettle-meta.h>}, and is used
by Nettle's implementation of @acronym{HMAC} @pxref{Keyed hash
functions}.

@deftp {Meta struct} @code{struct nettle_hash} name context_size digest_size block_size init update digest
The last three attributes are function pointers, of types
@code{nettle_hash_init_func}, @code{nettle_hash_update_func}, and
@code{nettle_hash_digest_func}. The first argument to these functions is
@code{void *} pointer so a context struct, which is of size
@code{context_size}. 
@end deftp

Niels Möller's avatar
Niels Möller committed
518
519
520
@deftypevr {Constant Struct} {struct nettle_cipher} nettle_md2
@deftypevrx {Constant Struct} {struct nettle_cipher} nettle_md4
@deftypevrx {Constant Struct} {struct nettle_cipher} nettle_md5
Niels Möller's avatar
Niels Möller committed
521
522
523
524
525
526
@deftypevrx {Constant Struct} {struct nettle_cipher} nettle_sha1
@deftypevrx {Constant Struct} {struct nettle_cipher} nettle_sha256

These are all the hash functions that Nettle implements.
@end deftypevr

527
@node Cipher functions, Cipher modes, Hash functions, Reference
Niels Möller's avatar
Niels Möller committed
528
529
@comment  node-name,  next,  previous,  up
@section Cipher functions
530
@cindex Cipher
Niels Möller's avatar
Niels Möller committed
531
532
533
534

A @dfn{cipher} is a function that takes a message or @dfn{plaintext}
and a secret @dfn{key} and transforms it to a @dfn{ciphertext}. Given
only the ciphertext, but not the key, it should be hard to find the
Niels Möller's avatar
Niels Möller committed
535
plaintext. Given matching pairs of plaintext and ciphertext, it should
Niels Möller's avatar
Niels Möller committed
536
537
be hard to find the key.

538
539
540
@cindex Block Cipher
@cindex Stream Cipher

Niels Möller's avatar
Niels Möller committed
541
542
543
544
545
546
547
548
There are two main classes of ciphers: Block ciphers and stream ciphers.

A block cipher can process data only in fixed size chunks, called
@dfn{blocks}. Typical block sizes are 8 or 16 octets. To encrypt
arbitrary messages, you usually have to pad it to an integral number of
blocks, split it into blocks, and then process each block. The simplest
way is to process one block at a time, independent of each other. That
mode of operation is called @dfn{ECB}, Electronic Code Book mode.
549
However, using @acronym{ECB} is usually a bad idea. For a start, plaintext blocks
Niels Möller's avatar
Niels Möller committed
550
551
that are equal are transformed to ciphertext blocks that are equal; that
leaks information about the plaintext. Usually you should apply the
552
553
554
555
cipher is some ``feedback mode'', @dfn{CBC} (Cipher Block Chaining) and
@dfn{CTR} (Counter mode) being two of
of the most popular. See @xref{Cipher modes}, for information on
how to apply @acronym{CBC} and @acronym{CTR} with Nettle.
Niels Möller's avatar
Niels Möller committed
556

Niels Möller's avatar
Niels Möller committed
557
A stream cipher can be used for messages of arbitrary length. A typical
Niels Möller's avatar
Niels Möller committed
558
stream cipher is a keyed pseudo-random generator. To encrypt a plaintext
Niels Möller's avatar
Niels Möller committed
559
message of @var{n} octets, you key the generator, generate @var{n}
Niels Möller's avatar
Niels Möller committed
560
octets of pseudo-random data, and XOR it with the plaintext. To decrypt,
Niels Möller's avatar
Niels Möller committed
561
562
563
564
565
566
567
568
regenerate the same stream using the key, XOR it to the ciphertext, and
the plaintext is recovered.

@strong{Caution:} The first rule for this kind of cipher is the
same as for a One Time Pad: @emph{never} ever use the same key twice.

A common misconception is that encryption, by itself, implies
authentication. Say that you and a friend share a secret key, and you
Niels Möller's avatar
Niels Möller committed
569
receive an encrypted message. You apply the key, and get a plaintext
570
message that makes sense to you. Can you then be sure that it really was
Niels Möller's avatar
Niels Möller committed
571
your friend that wrote the message you're reading? The answer is no. For
Niels Möller's avatar
Niels Möller committed
572
573
574
575
example, if you were using a block cipher in ECB mode, an attacker may
pick up the message on its way, and reorder, delete or repeat some of
the blocks. Even if the attacker can't decrypt the message, he can
change it so that you are not reading the same message as your friend
Niels Möller's avatar
Niels Möller committed
576
577
578
579
wrote. If you are using a block cipher in @acronym{CBC} mode rather than
ECB, or are using a stream cipher, the possibilities for this sort of
attack are different, but the attacker can still make predictable
changes to the message.
Niels Möller's avatar
Niels Möller committed
580
581
582

It is recommended to @emph{always} use an authentication mechanism in
addition to encrypting the messages. Popular choices are Message
Niels Möller's avatar
Niels Möller committed
583
Authentication Codes like @acronym{HMAC-SHA1} @pxref{Keyed hash
584
functions}, or digital signatures like @acronym{RSA}.
Niels Möller's avatar
Niels Möller committed
585

586
Some ciphers have so called ``weak keys'', keys that results in
Niels Möller's avatar
Niels Möller committed
587
588
589
590
591
592
593
594
undesirable structure after the key setup processing, and should be
avoided. In Nettle, the presence of weak keys for a cipher mean that the
key setup function can fail, so you have to check its return value. In
addition, the context struct has a field @code{status}, that is set to a
non-zero value if key setup fails. When possible, avoid algorithm that
have weak keys. There are several good ciphers that don't have any weak
keys.

595
596
597
598
599
600
601
602
To encrypt a message, you first initialize a cipher context for
encryption or decryption with a particular key. You then use the context
to process plaintext or ciphertext messages. The initialization is known
as called @dfn{key setup}. With Nettle, it is recommended to use each
context struct for only one direction, even if some of the ciphers use a
single key setup function that can be used for both encryption and
decryption.

Niels Möller's avatar
Niels Möller committed
603
@subsection AES
604
AES is a block cipher, specified by NIST as a replacement for
Niels Möller's avatar
Niels Möller committed
605
the older DES standard. The standard is the result of a competition
606
607
between cipher designers. The winning design, also known as RIJNDAEL,
was constructed by Joan Daemen and Vincent Rijnmen.
Niels Möller's avatar
Niels Möller committed
608
609

Like all the AES candidates, the winning design uses a block size of 128
Niels Möller's avatar
Niels Möller committed
610
bits, or 16 octets, and variable key-size, 128, 192 and 256 bits (16, 24
Niels Möller's avatar
Niels Möller committed
611
612
613
614
615
616
617
and 32 octets) being the allowed key sizes. It does not have any weak
keys. Nettle defines AES in @file{<nettle/aes.h>}.
 
@deftp {Context struct} {struct aes_ctx}
@end deftp

@defvr Constant AES_BLOCK_SIZE
Niels Möller's avatar
Niels Möller committed
618
The AES block-size, 16
Niels Möller's avatar
Niels Möller committed
619
620
621
622
623
624
625
626
627
628
629
630
@end defvr

@defvr Constant AES_MIN_KEY_SIZE
@end defvr

@defvr Constant AES_MAX_KEY_SIZE
@end defvr

@defvr Constant AES_KEY_SIZE
Default AES key size, 32
@end defvr

631
632
633
@deftypefun void aes_set_encrypt_key (struct aes_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{key})
@deftypefunx void aes_set_decrypt_key (struct aes_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{key})
Initialize the cipher, for encryption or decryption, respectively.
Niels Möller's avatar
Niels Möller committed
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
@end deftypefun

@deftypefun void aes_encrypt (struct aes_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{dst}, uint8_t *@var{src})
Encryption function. @var{length} must be an integral multiple of the
block size. If it is more than one block, the data is processed in ECB
mode. @code{src} and @code{dst} may be equal, but they must not overlap
in any other way.
@end deftypefun

@deftypefun void aes_decrypt (struct aes_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{dst}, uint8_t *@var{src})
Analogous to @code{aes_encrypt}
@end deftypefun

@subsection ARCFOUR
ARCFOUR is a stream cipher, also known under the trade marked name RC4,
and it is one of the fastest ciphers around. A problem is that the key
setup of ARCFOUR is quite weak, you should never use keys with
structure, keys that are ordinary passwords, or sequences of keys like
652
``secret:1'', ``secret:2'', @enddots{}. If you have keys that don't look
Niels Möller's avatar
Niels Möller committed
653
like random bit strings, and you want to use ARCFOUR, always hash the
Niels Möller's avatar
Niels Möller committed
654
655
656
key before feeding it to ARCFOUR. Furthermore, the initial bytes of the
generated key stream leak information about the key; for this reason, it
is recommended to discard the first 512 bytes of the key stream.
Niels Möller's avatar
Niels Möller committed
657
658
659
660

@example
/* A more robust key setup function for ARCFOUR */
void
661
662
arcfour_set_key_hashed(struct arcfour_ctx *ctx,
                       unsigned length, const uint8_t *key)
Niels Möller's avatar
Niels Möller committed
663
@{
Niels Möller's avatar
Niels Möller committed
664
665
666
  struct sha256_ctx hash;
  uint8_t digest[SHA256_DIGEST_SIZE];
  uint8_t buffer[0x200];
Niels Möller's avatar
Niels Möller committed
667

Niels Möller's avatar
Niels Möller committed
668
669
670
  sha256_init(&hash);
  sha256_update(&hash, length, key);
  sha256_digest(&hash, SHA256_DIGEST_SIZE, digest);
Niels Möller's avatar
Niels Möller committed
671

Niels Möller's avatar
Niels Möller committed
672
673
  arcfour_set_key(ctx, SHA256_DIGEST_SIZE, digest);
  arcfour_crypt(ctx, sizeof(buffer), buffer, buffer);
Niels Möller's avatar
Niels Möller committed
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
@}
@end example

Nettle defines ARCFOUR in @file{<nettle/arcfour.h>}.

@deftp {Context struct} {struct arcfour_ctx}
@end deftp

@defvr Constant ARCFOUR_MIN_KEY_SIZE
Minimum key size, 1
@end defvr

@defvr Constant ARCFOUR_MAX_KEY_SIZE
Maximum key size, 256
@end defvr

@defvr Constant ARCFOUR_KEY_SIZE
Default ARCFOUR key size, 16
@end defvr

@deftypefun void arcfour_set_key (struct arcfour_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{key})
Initialize the cipher. The same function is used for both encryption and
decryption. 
@end deftypefun

699
@deftypefun void arcfour_crypt (struct arcfour_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{dst}, uint8_t *@var{src})
Niels Möller's avatar
Niels Möller committed
700
701
702
703
704
705
706
Encrypt some data. The same function is used for both encryption and
decryption. Unlike the block ciphers, this function modifies the
context, so you can split the data into arbitrary chunks and encrypt
them one after another. The result is the same as if you had called
@code{arcfour_crypt} only once with all the data.
@end deftypefun

Niels Möller's avatar
Niels Möller committed
707
708
709
710
@subsection ARCTWO
ARCTWO (also known as the trade marked name RC2) is a block cipher
specified in RFC 2268. Nettle also include a variation of the ARCTWO
set key operation that lack one step, to be compatible with the
711
reverse engineered RC2 cipher description, as described in a Usenet
Niels Möller's avatar
Niels Möller committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
post to @code{sci.crypt} by Peter Gutmann.

ARCTWO uses a block size of 64 bits, and variable key-size ranging
from 1 to 128 octets. Besides the key, ARCTWO also has a second
parameter to key setup, the number of effective key bits, @code{ekb}.
This parameter can be used to artificially reduce the key size. In
practice, @code{ekb} is usually set equal to the input key size.
Nettle defines ARCTWO in @file{<nettle/arctwo.h>}.

We do not recommend the use of ARCTWO; the Nettle implementation is
provided primarily for interoperability with existing applications and
standards.

@deftp {Context struct} {struct arctwo_ctx}
@end deftp

@defvr Constant ARCTWO_BLOCK_SIZE
The AES block-size, 8
@end defvr

@defvr Constant ARCTWO_MIN_KEY_SIZE
@end defvr

@defvr Constant ARCTWO_MAX_KEY_SIZE
@end defvr

@defvr Constant ARCTWO_KEY_SIZE
Default ARCTWO key size, 8
@end defvr

@deftypefun void arctwo_set_key_ekb (struct arctwo_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{key}, unsigned @var{ekb})
@deftypefunx void arctwo_set_key (struct arctwo_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{key})
@deftypefunx void arctwo_set_key_gutmann (struct arctwo_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{key})
Initialize the cipher. The same function is used for both encryption
and decryption. The first function is the most general one, which lets
you provide both the variable size key, and the desired effective key
size (in bits). The maximum value for @var{ekb} is 1024, and for
convenience, @code{ekb = 0} has the same effect as @code{ekb = 1024}.

@code{arctwo_set_key(ctx, length, key)} is equivalent to
@code{arctwo_set_key_ekb(ctx, length, key, 8*length)}, and
@code{arctwo_set_key_gutmann(ctx, length, key)} is equivalent to
@code{arctwo_set_key_ekb(ctx, length, key, 1024)}
@end deftypefun

@deftypefun void arctwo_encrypt (struct arctwo_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{dst}, uint8_t *@var{src})
Encryption function. @var{length} must be an integral multiple of the
block size. If it is more than one block, the data is processed in ECB
mode. @code{src} and @code{dst} may be equal, but they must not
overlap in any other way.
@end deftypefun

@deftypefun void arctwo_decrypt (struct arctwo_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{dst}, uint8_t *@var{src})
Analogous to @code{arctwo_encrypt}
@end deftypefun

Niels Möller's avatar
Niels Möller committed
768
769
@subsection CAST128

770
771
772
773
774
775
776
777
CAST-128 is a block cipher, specified in @cite{RFC 2144}. It uses a 64
bit (8 octets) block size, and a variable key size of up to 128 bits.
Nettle defines cast128 in @file{<nettle/cast128.h>}.

@deftp {Context struct} {struct cast128_ctx}
@end deftp

@defvr Constant CAST128_BLOCK_SIZE
Niels Möller's avatar
Niels Möller committed
778
The CAST128 block-size, 8
779
780
781
@end defvr

@defvr Constant CAST128_MIN_KEY_SIZE
Niels Möller's avatar
Niels Möller committed
782
Minimum CAST128 key size, 5
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
@end defvr

@defvr Constant CAST128_MAX_KEY_SIZE
Maximum CAST128 key size, 16
@end defvr

@defvr Constant CAST128_KEY_SIZE
Default CAST128 key size, 16
@end defvr

@deftypefun void cast128_set_key (struct cast128_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{key})
Initialize the cipher. The same function is used for both encryption and
decryption. 
@end deftypefun

@deftypefun void cast128_encrypt (struct cast128_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{dst}, uint8_t *@var{src})
Encryption function. @var{length} must be an integral multiple of the
block size. If it is more than one block, the data is processed in ECB
mode. @code{src} and @code{dst} may be equal, but they must not overlap
in any other way.
@end deftypefun

@deftypefun void cast128_decrypt (struct cast128_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{dst}, uint8_t *@var{src})
Analogous to @code{cast128_encrypt}
@end deftypefun

Niels Möller's avatar
Niels Möller committed
809
810
@subsection BLOWFISH

811
812
813
814
815
816
817
818
BLOWFISH is a block cipher designed by Bruce Schneier. It uses a block
size of 64 bits (8 octets), and a variable key size, up to 448 bits. It
has some weak keys. Nettle defines BLOWFISH in @file{<nettle/blowfish.h>}.

@deftp {Context struct} {struct blowfish_ctx}
@end deftp

@defvr Constant BLOWFISH_BLOCK_SIZE
Niels Möller's avatar
Niels Möller committed
819
The BLOWFISH block-size, 8
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
@end defvr

@defvr Constant BLOWFISH_MIN_KEY_SIZE
Minimum BLOWFISH key size, 8
@end defvr

@defvr Constant BLOWFISH_MAX_KEY_SIZE
Maximum BLOWFISH key size, 56
@end defvr

@defvr Constant BLOWFISH_KEY_SIZE
Default BLOWFISH key size, 16
@end defvr

@deftypefun int blowfish_set_key (struct blowfish_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{key})
Initialize the cipher. The same function is used for both encryption and
decryption. Returns 1 on success, and 0 if the key was weak. Calling
@code{blowfish_encrypt} or @code{blowfish_decrypt} with a weak key will
crash with an assert violation.
@end deftypefun

@deftypefun void blowfish_encrypt (struct blowfish_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{dst}, uint8_t *@var{src})
Encryption function. @var{length} must be an integral multiple of the
block size. If it is more than one block, the data is processed in ECB
mode. @code{src} and @code{dst} may be equal, but they must not overlap
in any other way.
@end deftypefun

@deftypefun void blowfish_decrypt (struct blowfish_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{dst}, uint8_t *@var{src})
Analogous to @code{blowfish_encrypt}
@end deftypefun

Niels Möller's avatar
Niels Möller committed
852
@subsection DES
853
854
855
856
857
858
859
860
861
862
DES is the old Data Encryption Standard, specified by NIST. It uses a
block size of 64 bits (8 octets), and a key size of 56 bits. However,
the key bits are distributed over 8 octets, where the least significant
bit of each octet is used for parity. A common way to use DES is to
generate 8 random octets in some way, then set the least significant bit
of each octet to get odd parity, and initialize DES with the resulting
key.

The key size of DES is so small that keys can be found by brute force,
using specialized hardware or lots of ordinary work stations in
Niels Möller's avatar
Niels Möller committed
863
parallel. One shouldn't be using plain DES at all today, if one uses
Niels Möller's avatar
Niels Möller committed
864
DES at all one should be using ``triple DES'', see DES3 below.
865
866
867
868
869
870
871

DES also has some weak keys. Nettle defines DES in @file{<nettle/des.h>}.

@deftp {Context struct} {struct des_ctx}
@end deftp

@defvr Constant DES_BLOCK_SIZE
Niels Möller's avatar
Niels Möller committed
872
The DES block-size, 8
873
874
875
876
877
878
@end defvr

@defvr Constant DES_KEY_SIZE
DES key size, 8
@end defvr

879
@deftypefun int des_set_key (struct des_ctx *@var{ctx}, const uint8_t *@var{key})
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
Initialize the cipher. The same function is used for both encryption and
decryption. Returns 1 on success, and 0 if the key was weak or had bad
parity. Calling @code{des_encrypt} or @code{des_decrypt} with a bad key
will crash with an assert violation.
@end deftypefun

@deftypefun void des_encrypt (struct des_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{dst}, uint8_t *@var{src})
Encryption function. @var{length} must be an integral multiple of the
block size. If it is more than one block, the data is processed in ECB
mode. @code{src} and @code{dst} may be equal, but they must not overlap
in any other way.
@end deftypefun

@deftypefun void des_decrypt (struct des_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{dst}, uint8_t *@var{src})
Analogous to @code{des_encrypt}
@end deftypefun
Niels Möller's avatar
Niels Möller committed
896

897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
@deftypefun void des_fix_parity (unsigned @var{length}, uint8_t *@var{dst}, const uint8_t *@var{src})
Adjusts the parity bits to match DES's requirements. You need this
function if you have created a random-looking string by a key agreement
protocol, and want to use it as a DES key. @var{dst} and @var{src} may
be equal.
@end deftypefun

@subsection DES3
The inadequate key size of DES has already been mentioned. One way to
increase the key size is to pipe together several DES boxes with
independent keys. It turns out that using two DES ciphers is not as
secure as one might think, even if the key size of the combination is a
respectable 112 bits.

The standard way to increase DES's key size is to use three DES boxes.
The mode of operation is a little peculiar: the middle DES box is wired
in the reverse direction. To encrypt a block with DES3, you encrypt it
using the first 56 bits of the key, then @emph{decrypt} it using the
middle 56 bits of the key, and finally encrypt it again using the last
916
917
56 bits of the key. This is known as ``ede'' triple-DES, for
``encrypt-decrypt-encrypt''.
918

919
The ``ede'' construction provides some backward compatibility, as you get
920
921
922
923
924
925
926
plain single DES simply by feeding the same key to all three boxes. That
should help keeping down the gate count, and the price, of hardware
circuits implementing both plain DES and DES3.

DES3 has a key size of 168 bits, but just like plain DES, useless parity
bits are inserted, so that keys are represented as 24 octets (192 bits).
As a 112 bit key is large enough to make brute force attacks
927
impractical, some applications uses a ``two-key'' variant of triple-DES.
928
929
930
931
932
933
In this mode, the same key bits are used for the first and the last DES
box in the pipe, while the middle box is keyed independently. The
two-key variant is believed to be secure, i.e. there are no known
attacks significantly better than brute force.

Naturally, it's simple to implement triple-DES on top of Nettle's DES
934
functions. Nettle includes an implementation of three-key ``ede''
935
936
937
938
939
940
941
triple-DES, it is defined in the same place as plain DES,
@file{<nettle/des.h>}.

@deftp {Context struct} {struct des3_ctx}
@end deftp

@defvr Constant DES3_BLOCK_SIZE
Niels Möller's avatar
Niels Möller committed
942
The DES3 block-size is the same as DES_BLOCK_SIZE, 8
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
@end defvr

@defvr Constant DES3_KEY_SIZE
DES key size, 24
@end defvr

@deftypefun int des3_set_key (struct des3_ctx *@var{ctx}, const uint8_t *@var{key})
Initialize the cipher. The same function is used for both encryption and
decryption. Returns 1 on success, and 0 if the key was weak or had bad
parity. Calling @code{des_encrypt} or @code{des_decrypt} with a bad key
will crash with an assert violation.
@end deftypefun

For random-looking strings, you can use @code{des_fix_parity} to adjust
the parity bits before calling @code{des3_set_key}.

@deftypefun void des3_encrypt (struct des3_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{dst}, uint8_t *@var{src})
Encryption function. @var{length} must be an integral multiple of the
block size. If it is more than one block, the data is processed in ECB
mode. @code{src} and @code{dst} may be equal, but they must not overlap
in any other way.
@end deftypefun

@deftypefun void des3_decrypt (struct des3_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{dst}, uint8_t *@var{src})
Analogous to @code{des_encrypt}
@end deftypefun

Niels Möller's avatar
Niels Möller committed
970
@subsection SERPENT
971
972
SERPENT is one of the AES finalists, designed by Ross Anderson, Eli
Biham and Lars Knudsen. Thus, the interface and properties are similar
Niels Möller's avatar
Niels Möller committed
973
to AES'. One peculiarity is that it is quite pointless to use it with
974
975
976
977
978
979
980
anything but the maximum key size, smaller keys are just padded to
larger ones. Nettle defines SERPENT in @file{<nettle/serpent.h>}.

@deftp {Context struct} {struct serpent_ctx}
@end deftp

@defvr Constant SERPENT_BLOCK_SIZE
Niels Möller's avatar
Niels Möller committed
981
The SERPENT block-size, 16
982
983
984
@end defvr

@defvr Constant SERPENT_MIN_KEY_SIZE
Niels Möller's avatar
Niels Möller committed
985
Minimum SERPENT key size, 16
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
@end defvr

@defvr Constant SERPENT_MAX_KEY_SIZE
Maximum SERPENT key size, 32
@end defvr

@defvr Constant SERPENT_KEY_SIZE
Default SERPENT key size, 32
@end defvr

@deftypefun void serpent_set_key (struct serpent_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{key})
Initialize the cipher. The same function is used for both encryption and
decryption. 
@end deftypefun

@deftypefun void serpent_encrypt (struct serpent_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{dst}, uint8_t *@var{src})
Encryption function. @var{length} must be an integral multiple of the
block size. If it is more than one block, the data is processed in ECB
mode. @code{src} and @code{dst} may be equal, but they must not overlap
in any other way.
@end deftypefun

@deftypefun void serpent_decrypt (struct serpent_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{dst}, uint8_t *@var{src})
Analogous to @code{serpent_encrypt}
@end deftypefun

Niels Möller's avatar
Niels Möller committed
1012
1013

@subsection TWOFISH
1014
1015
1016
1017
1018
1019
1020
Another AES finalist, this one designed by Bruce Schneier and others.
Nettle defines it in @file{<nettle/twofish.h>}.

@deftp {Context struct} {struct twofish_ctx}
@end deftp

@defvr Constant TWOFISH_BLOCK_SIZE
Niels Möller's avatar
Niels Möller committed
1021
The TWOFISH block-size, 16
1022
1023
1024
@end defvr

@defvr Constant TWOFISH_MIN_KEY_SIZE
Niels Möller's avatar
Niels Möller committed
1025
Minimum TWOFISH key size, 16
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
@end defvr

@defvr Constant TWOFISH_MAX_KEY_SIZE
Maximum TWOFISH key size, 32
@end defvr

@defvr Constant TWOFISH_KEY_SIZE
Default TWOFISH key size, 32
@end defvr

@deftypefun void twofish_set_key (struct twofish_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{key})
Initialize the cipher. The same function is used for both encryption and
decryption. 
@end deftypefun

@deftypefun void twofish_encrypt (struct twofish_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{dst}, uint8_t *@var{src})
Encryption function. @var{length} must be an integral multiple of the
block size. If it is more than one block, the data is processed in ECB
mode. @code{src} and @code{dst} may be equal, but they must not overlap
in any other way.
@end deftypefun

@deftypefun void twofish_decrypt (struct twofish_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{dst}, uint8_t *@var{src})
Analogous to @code{twofish_encrypt}
@end deftypefun

Niels Möller's avatar
Niels Möller committed
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
@c @node nettle_cipher, Cipher Block Chaining, Cipher functions, Reference
@c @comment  node-name,  next,  previous,  up
@subsection @code{struct nettle_cipher}

Nettle includes a struct including information about some of the more
regular cipher functions. It should be considered a little experimental,
but can be useful for applications that need a simple way to handle
various algorithms. Nettle defines these structs in
@file{<nettle/nettle-meta.h>}. 

@deftp {Meta struct} @code{struct nettle_cipher} name context_size block_size key_size set_encrypt_key set_decrypt_key encrypt decrypt
The last four attributes are function pointers, of types
@code{nettle_set_key_func} and @code{nettle_crypt_func}. The first
argument to these functions is a @code{void *} pointer to a context
struct, which is of size @code{context_size}.
@end deftp

@deftypevr {Constant Struct} {struct nettle_cipher} nettle_aes128
@deftypevrx {Constant Struct} {struct nettle_cipher} nettle_aes192
@deftypevrx {Constant Struct} {struct nettle_cipher} nettle_aes256

@deftypevrx {Constant Struct} {struct nettle_cipher} nettle_arcfour128
@deftypevrx {Constant Struct} {struct nettle_cipher} nettle_cast128

@deftypevrx {Constant Struct} {struct nettle_cipher} nettle_serpent128
@deftypevrx {Constant Struct} {struct nettle_cipher} nettle_serpent192
@deftypevrx {Constant Struct} {struct nettle_cipher} nettle_serpent256

@deftypevrx {Constant Struct} {struct nettle_cipher} nettle_twofish128
@deftypevrx {Constant Struct} {struct nettle_cipher} nettle_twofish192
@deftypevrx {Constant Struct} {struct nettle_cipher} nettle_twofish256

Niels Möller's avatar
Niels Möller committed
1084
1085
1086
1087
1088
@deftypevrx {Constant Struct} {struct nettle_cipher} nettle_arctwo40;
@deftypevrx {Constant Struct} {struct nettle_cipher} nettle_arctwo64;
@deftypevrx {Constant Struct} {struct nettle_cipher} nettle_arctwo128;
@deftypevrx {Constant Struct} {struct nettle_cipher} nettle_arctwo_gutmann128;

Niels Möller's avatar
Niels Möller committed
1089
Nettle includes such structs for all the @emph{regular} ciphers, i.e.
Niels Möller's avatar
Niels Möller committed
1090
ones without weak keys or other oddities.
Niels Möller's avatar
Niels Möller committed
1091
1092
@end deftypevr

1093
@node Cipher modes, Keyed hash functions, Cipher functions, Reference
1094
@comment  node-name,  next,  previous,  up
1095
1096
@section Cipher modes

Niels Möller's avatar
Niels Möller committed
1097
Cipher modes of operation specifies the procedure to use when
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
encrypting a message that is larger than the cipher's block size. As
explained in @xref{Cipher functions}, splitting the message into blocks
and processing them independently with the block cipher (Electronic Code
Book mode, @acronym{ECB}) leaks information. Besides @acronym{ECB},
Nettle provides two other modes of operation: Cipher Block Chaining
(@acronym{CBC}) and Counter mode (@acronym{CTR}). @acronym{CBC} is
widely used, but there are a few subtle issues of information leakage.
@acronym{CTR} was standardized more recently, and is believed to be more
secure.

@subsection Cipher Block Chaining
1109

1110
1111
1112
@cindex Cipher Block Chaining
@cindex CBC Mode

Niels Möller's avatar
Niels Möller committed
1113
When using @acronym{CBC} mode, plaintext blocks are not encrypted
Niels Möller's avatar
Niels Möller committed
1114
1115
independently of each other, like in Electronic Cook Book mode. Instead,
when encrypting a block in @acronym{CBC} mode, the previous ciphertext
1116
block is XORed with the plaintext before it is fed to the block cipher.
Niels Möller's avatar
Niels Möller committed
1117
1118
1119
1120
When encrypting the first block, a random block called an @dfn{IV}, or
Initialization Vector, is used as the ``previous ciphertext block''. The
IV should be chosen randomly, but it need not be kept secret, and can
even be transmitted in the clear together with the encrypted data.
1121

Niels Möller's avatar
Niels Möller committed
1122
1123
In symbols, if @code{E_k} is the encryption function of a block cipher,
and @code{IV} is the initialization vector, then @code{n} plaintext blocks
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
@code{M_1},@dots{} @code{M_n} are transformed into @code{n} ciphertext blocks
@code{C_1},@dots{} @code{C_n} as follows:

@example
C_1 = E_k(IV  XOR M_1)
C_2 = E_k(C_1 XOR M_2)

@dots{}

C_n = E_k(C_(n-1) XOR M_n)
@end example

1136
1137
Nettle's includes two functions for applying a block cipher in Cipher
Block Chaining (@acronym{CBC}) mode, one for encryption and one for
Niels Möller's avatar
Niels Möller committed
1138
decryption. These functions uses @code{void *} to pass cipher contexts
1139
around.
1140

1141
@deftypefun {void} cbc_encrypt (void *@var{ctx}, nettle_crypt_func @var{f}, unsigned @var{block_size}, uint8_t *@var{iv}, unsigned @var{length}, uint8_t *@var{dst}, const uint8_t *@var{src})
1142
1143
@deftypefunx {void} cbc_decrypt (void *@var{ctx}, void (*@var{f})(), unsigned @var{block_size}, uint8_t *@var{iv}, unsigned @var{length}, uint8_t *@var{dst}, const uint8_t *@var{src})

Niels Möller's avatar
Niels Möller committed
1144
Applies the encryption or decryption function @var{f} in @acronym{CBC}
Niels Möller's avatar
Niels Möller committed
1145
1146
1147
mode. The final ciphertext block processed is copied into @var{iv}
before returning, so that large message be processed be a sequence of
calls to @code{cbc_encrypt}. The function @var{f} is of type
1148
1149
1150
1151
1152
1153
1154

@code{void f (void *@var{ctx}, unsigned @var{length}, uint8_t @var{dst},
const uint8_t *@var{src})},

@noindent and the @code{cbc_encrypt} and @code{cbc_decrypt} functions pass their
argument @var{ctx} on to @var{f}.
@end deftypefun
1155

1156
There are also some macros to help use these functions correctly.
1157

1158
@deffn Macro CBC_CTX (@var{context_type}, @var{block_size})
1159
1160
1161
1162
1163
1164
1165
Expands into
@example
@{
   context_type ctx;
   uint8_t iv[block_size];
@}
@end example
1166
1167
@end deffn

Niels Möller's avatar
Niels Möller committed
1168
It can be used to define a @acronym{CBC} context struct, either directly,
1169

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
@example
struct CBC_CTX(struct aes_ctx, AES_BLOCK_SIZE) ctx;
@end example

or to give it a struct tag,

@example
struct aes_cbc_ctx CBC_CTX (struct aes_ctx, AES_BLOCK_SIZE);
@end example

1180
@deffn Macro CBC_SET_IV (@var{ctx}, @var{iv})
1181
First argument is a pointer to a context struct as defined by @code{CBC_CTX},
1182
1183
1184
and the second is a pointer to an Initialization Vector (IV) that is
copied into that context.
@end deffn
1185
1186
1187

@deffn Macro CBC_ENCRYPT (@var{ctx}, @var{f}, @var{length}, @var{dst}, @var{src})
@deffnx Macro CBC_DECRYPT (@var{ctx}, @var{f}, @var{length}, @var{dst}, @var{src})
1188
1189
1190
1191
1192
A simpler way to invoke @code{cbc_encrypt} and @code{cbc_decrypt}. The
first argument is a pointer to a context struct as defined by
@code{CBC_CTX}, and the second argument is an encryption or decryption
function following Nettle's conventions. The last three arguments define
the source and destination area for the operation.
1193
@end deffn
1194

1195
1196
1197
These macros use some tricks to make the compiler display a warning if
the types of @var{f} and @var{ctx} don't match, e.g. if you try to use
an @code{struct aes_ctx} context with the @code{des_encrypt} function.
1198

1199
1200
@subsection Counter mode

1201
1202
1203
1204
1205
1206
1207
@cindex Counter Mode
@cindex CTR Mode

Counter mode (@acronym{CTR}) uses the block cipher as a keyed
pseudo-random generator. The output of the generator is XORed with the
data to be encrypted. It can be understood as a way to transform a block
cipher to a stream cipher.
1208
1209
1210
1211
1212
1213

The message is divided into @code{n} blocks @code{M_1},@dots{}
@code{M_n}, where @code{M_n} is of size @code{m} which may be smaller
than the block size. Except for the last block, all the message blocks
must be of size equal to the cipher's block size.

Niels Möller's avatar
Niels Möller committed
1214
1215
If @code{E_k} is the encryption function of a block cipher, @code{IC} is
the initial counter, then the @code{n} plaintext blocks are
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
transformed into @code{n} ciphertext blocks @code{C_1},@dots{}
@code{C_n} as follows:

@example
C_1 = E_k(IC) XOR M_1
C_2 = E_k(IC + 1) XOR M_2

@dots{}

C_(n-1) = E_k(IC + n - 2) XOR M_(n-1)
C_n = E_k(IC + n - 1) [1..m] XOR M_n
@end example

The @acronym{IC} is the initial value for the counter, it plays a
similar role as the @acronym{IV} for @acronym{CBC}. When adding,
@code{IC + x}, @acronym{IC} is interpreted as an integer, in network
byte order. For the last block, @code{E_k(IC + n - 1) [1..m]} means that
the cipher output is truncated to @code{m} bytes.

@deftypefun {void} ctr_crypt (void *@var{ctx}, nettle_crypt_func @var{f}, unsigned @var{block_size}, uint8_t *@var{ctr}, unsigned @var{length}, uint8_t *@var{dst}, const uint8_t *@var{src})

Applies the encryption function @var{f} in @acronym{CTR} mode. Note that
for @acronym{CTR} mode, encryption and decryption is the same operation,
and hence @var{f} should always be the encryption function for the
underlying block cipher.

When a message is encrypted using a sequence of calls to
@code{ctr_crypt}, all but the last call @emph{must} use a length that is
a multiple of the block size.
@end deftypefun

Like for @acronym{CBC}, there are also a couple of helper macros.

@deffn Macro CTR_CTX (@var{context_type}, @var{block_size})
Expands into
@example
@{
   context_type ctx;
   uint8_t ctr[block_size];
@}
@end example
@end deffn

@deffn Macro CTR_SET_COUNTER (@var{ctx}, @var{iv})
First argument is a pointer to a context struct as defined by
@code{CTR_CTX}, and the second is a pointer to an initial counter that
is copied into that context.
@end deffn

@deffn Macro CTR_CRYPT (@var{ctx}, @var{f}, @var{length}, @var{dst}, @var{src})
A simpler way to invoke @code{ctr_crypt}. The first argument is a
pointer to a context struct as defined by @code{CTR_CTX}, and the second
argument is an encryption function following Nettle's conventions. The
last three arguments define the source and destination area for the
operation.
@end deffn

Niels Möller's avatar
Niels Möller committed
1273

1274
@node Keyed hash functions, Public-key algorithms, Cipher modes, Reference
Niels Möller's avatar
Niels Möller committed
1275
1276
1277
@comment  node-name,  next,  previous,  up
@section Keyed Hash Functions

1278
1279
1280
1281
@cindex Keyed Hash Function
@cindex Message Authentication Code
@cindex MAC

Niels Möller's avatar
Niels Möller committed
1282
1283
1284
1285
1286
1287
1288
1289
A @dfn{keyed hash function}, or @dfn{Message Authentication Code}
(@acronym{MAC}) is a function that takes a key and a message, and
produces fixed size @acronym{MAC}. It should be hard to compute a
message and a matching @acronym{MAC} without knowledge of the key. It
should also be hard to compute the key given only messages and
corresponding @acronym{MAC}s.

Keyed hash functions are useful primarily for message authentication,
1290
when Alice and Bob shares a secret: The sender, Alice, computes the
Niels Möller's avatar
Niels Möller committed
1291
1292
1293
@acronym{MAC} and attaches it to the message. The receiver, Bob, also computes
the @acronym{MAC} of the message, using the same key, and compares that
to Alice's value. If they match, Bob can be assured that
1294
the message has not been modified on its way from Alice.
Niels Möller's avatar
Niels Möller committed
1295
1296
1297
1298
1299
1300
1301
1302
1303

However, unlike digital signatures, this assurance is not transferable.
Bob can't show the message and the @acronym{MAC} to a third party and
prove that Alice sent that message. Not even if he gives away the key to
the third party. The reason is that the @emph{same} key is used on both
sides, and anyone knowing the key can create a correct @acronym{MAC} for
any message. If Bob believes that only he and Alice knows the key, and
he knows that he didn't attach a @acronym{MAC} to a particular message,
he knows it must be Alice who did it. However, the third party can't
1304
distinguish between a @acronym{MAC} created by Alice and one created by
Niels Möller's avatar
Niels Möller committed
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
Bob.

Keyed hash functions are typically a lot faster than digital signatures
as well.

@subsection @acronym{HMAC}

One can build keyed hash functions from ordinary hash functions. Older
constructions simply concatenate secret key and message and hashes that, but
such constructions have weaknesses. A better construction is
@acronym{HMAC}, described in @cite{RFC 2104}.

For an underlying hash function @code{H}, with digest size @code{l} and
internal block size @code{b}, @acronym{HMAC-H} is constructed as
Niels Möller's avatar
Niels Möller committed
1319
follows: From a given key @code{k}, two distinct subkeys @code{k_i} and
Niels Möller's avatar
Niels Möller committed
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
@code{k_o} are constructed, both of length @code{b}. The
@acronym{HMAC-H} of a message @code{m} is then computed as @code{H(k_o |
H(k_i | m))}, where @code{|} denotes string concatenation.

@acronym{HMAC} keys can be of any length, but it is recommended to use
keys of length @code{l}, the digest size of the underlying hash function
@code{H}. Keys that are longer than @code{b} are shortened to length
@code{l} by hashing with @code{H}, so arbitrarily long keys aren't
very useful. 

Nettle's @acronym{HMAC} functions are defined in @file{<nettle/hmac.h>}.
There are abstract functions that use a pointer to a @code{struct
nettle_hash} to represent the underlying hash function and @code{void
*} pointers that point to three different context structs for that hash
function. There are also concrete functions for @acronym{HMAC-MD5},
@acronym{HMAC-SHA1}, and @acronym{HMAC-SHA256}. First, the abstract
functions:

@deftypefun void hmac_set_key (void *@var{outer}, void *@var{inner}, void *@var{state}, const struct nettle_hash *@var{H}, unsigned @var{length}, const uint8_t *@var{key})
Initializes the three context structs from the key. The @var{outer} and
Niels Möller's avatar
Niels Möller committed
1340
@var{inner} contexts corresponds to the subkeys @code{k_o} and
Niels Möller's avatar
Niels Möller committed
1341
1342
1343
1344
@code{k_i}. @var{state} is used for hashing the message, and is
initialized as a copy of the @var{inner} context.
@end deftypefun

1345
@deftypefun void hmac_update (void *@var{state}, const struct nettle_hash *@var{H}, unsigned @var{length}, const uint8_t *@var{data})
Niels Möller's avatar
Niels Möller committed
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
This function is called zero or more times to process the message.
Actually, @code{hmac_update(state, H, length, data)} is equivalent to
@code{H->update(state, length, data)}, so if you wish you can use the
ordinary update function of the underlying hash function instead.
@end deftypefun

@deftypefun void hmac_digest (const void *@var{outer}, const void *@var{inner}, void *@var{state}, const struct nettle_hash *@var{H}, unsigned @var{length}, uint8_t *@var{digest})
Extracts the @acronym{MAC} of the message, writing it to @var{digest}.
@var{outer} and @var{inner} are not modified. @var{length} is usually
equal to @code{H->digest_size}, but if you provide a smaller value,
only the first @var{length} octets of the @acronym{MAC} are written.

This function also resets the @var{state} context so that you can start
over processing a new message (with the same key).
@end deftypefun

Like for @acronym{CBC}, there are some macros to help use these
functions correctly.

@deffn Macro HMAC_CTX (@var{type})
Expands into
@example
@{
   type outer;
   type inner;
   type state;
@}
@end example
@end deffn

Niels Möller's avatar
Niels Möller committed
1376
It can be used to define a @acronym{HMAC} context struct, either
Niels Möller's avatar
Niels Möller committed
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
directly,

@example
struct HMAC_CTX(struct md5_ctx) ctx;
@end example

or to give it a struct tag,

@example
struct hmac_md5_ctx HMAC_CTX (struct md5_ctx);
@end example

@deffn Macro HMAC_SET_KEY (@var{ctx}, @var{H}, @var{length}, @var{key})
@var{ctx} is a pointer to a context struct as defined by
@code{HMAC_CTX}, @var{H} is a pointer to a @code{const struct
nettle_hash} describing the underlying hash function (so it must match
the type of the components of @var{ctx}). The last two arguments specify
the secret key.
@end deffn

@deffn Macro HMAC_DIGEST (@var{ctx}, @var{H}, @var{length}, @var{digest})
@var{ctx} is a pointer to a context struct as defined by
@code{HMAC_CTX}, @var{H} is a pointer to a @code{const struct
nettle_hash} describing the underlying hash function. The last two
arguments specify where the digest is written.
@end deffn

Niels Möller's avatar
Niels Möller committed
1404
1405
1406
Note that there is no @code{HMAC_UPDATE} macro; simply call
@code{hmac_update} function directly, or the update function of the
underlying hash function.
Niels Möller's avatar
Niels Möller committed
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478

@subsection Concrete @acronym{HMAC} functions
Now we come to the specialized @acronym{HMAC} functions, which are
easier to use than the general @acronym{HMAC} functions.

@subsubsection @acronym{HMAC-MD5}

@deftp {Context struct} {struct hmac_md5_ctx}
@end deftp

@deftypefun void hmac_md5_set_key (struct hmac_md5_ctx *@var{ctx}, unsigned @var{key_length}, const uint8_t *@var{key})
Initializes the context with the key.
@end deftypefun

@deftypefun void hmac_md5_update (struct hmac_md5_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{data})
Process some more data.
@end deftypefun

@deftypefun void hmac_md5_digest (struct hmac_md5_ctx *@var{ctx}, unsigned @var{length}, uint8_t *@var{digest})
Extracts the @acronym{MAC}, writing it to @var{digest}. @var{length} may be smaller than
@code{MD5_DIGEST_SIZE}, in which case only the first @var{length}
octets of the @acronym{MAC} are written.

This function also resets the context for processing new messages, with
the same key.
@end deftypefun

@subsubsection @acronym{HMAC-SHA1}

@deftp {Context struct} {struct hmac_sha1_ctx}
@end deftp

@deftypefun void hmac_sha1_set_key (struct hmac_sha1_ctx *@var{ctx}, unsigned @var{key_length}, const uint8_t *@var{key})
Initializes the context with the key.
@end deftypefun

@deftypefun void hmac_sha1_update (struct hmac_sha1_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{data})
Process some more data.
@end deftypefun

@deftypefun void hmac_sha1_digest (struct hmac_sha1_ctx *@var{ctx}, unsigned @var{length}, uint8_t *@var{digest})
Extracts the @acronym{MAC}, writing it to @var{digest}. @var{length} may be smaller than
@code{SHA1_DIGEST_SIZE}, in which case only the first @var{length}
octets of the @acronym{MAC} are written.

This function also resets the context for processing new messages, with
the same key.
@end deftypefun


@subsubsection @acronym{HMAC-SHA256}

@deftp {Context struct} {struct hmac_sha256_ctx}
@end deftp

@deftypefun void hmac_sha256_set_key (struct hmac_sha256_ctx *@var{ctx}, unsigned @var{key_length}, const uint8_t *@var{key})
Initializes the context with the key.
@end deftypefun

@deftypefun void hmac_sha256_update (struct hmac_sha256_ctx *@var{ctx}, unsigned @var{length}, const uint8_t *@var{data})
Process some more data.
@end deftypefun

@deftypefun void hmac_sha256_digest (struct hmac_sha256_ctx *@var{ctx}, unsigned @var{length}, uint8_t *@var{digest})
Extracts the @acronym{MAC}, writing it to @var{digest}. @var{length} may be smaller than
@code{SHA256_DIGEST_SIZE}, in which case only the first @var{length}
octets of the @acronym{MAC} are written.

This function also resets the context for processing new messages, with
the same key.
@end deftypefun

1479
1480
1481
1482
1483
1484
1485
@node Public-key algorithms, Randomness, Keyed hash functions, Reference
@comment  node-name,  next,  previous,  up
@section Public-key algorithms

Nettle uses @acronym{GMP}, the GNU bignum library, for all calculations
with large numbers. In order to use the public-key features of Nettle,
you must install @acronym{GMP}, at least version 3.0, before compiling
1486
1487
Nettle, and you need to link your programs with @code{-lhogweed -lnettle
-lgmp}.
1488
1489
1490

The concept of @dfn{Public-key} encryption and digital signatures was
discovered by Whitfield Diffie and Martin E. Hellman and described in a
1491
paper 1976. In traditional, ``symmetric'', cryptography, sender and
1492
1493
1494
1495
1496
receiver share the same keys, and these keys must be distributed in a
secure way. And if there are many users or entities that need to
communicate, each @emph{pair} needs a shared secret key known by nobody
else.

1497
1498
1499
@cindex Public Key Cryptography
@cindex One-way function

1500
1501
1502
1503
Public-key cryptography uses trapdoor one-way functions. A
@dfn{one-way function} is a function @code{F} such that it is easy to
compute the value @code{F(x)} for any @code{x}, but given a value
@code{y}, it is hard to compute a corresponding @code{x} such that
1504
@code{y = F(x)}. Two examples are cryptographic hash functions, and
1505
1506
1507
1508
1509
1510
1511
1512
exponentiation in certain groups.

A @dfn{trapdoor one-way function} is a function @code{F} that is
one-way, unless one knows some secret information about @code{F}. If one
knows the secret, it is easy to compute both @code{F} and it's inverse.
If this sounds strange, look at the @acronym{RSA} example below.

Two important uses for one-way functions with trapdoors are public-key
1513
1514
1515
encryption, and digital signatures. The public-key encryption functions
in Nettle are not yet documented; the rest of this chapter is about
digital signatures.
1516
1517

To use a digital signature algorithm, one must first create a
Niels Möller's avatar
Niels Möller committed
1518
@dfn{key-pair}: A public key and a corresponding private key. The private
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
key is used to sign messages, while the public key is used for verifying
that that signatures and messages match. Some care must be taken when
distributing the public key; it need not be kept secret, but if a bad
guy is able to replace it (in transit, or in some user's list of known
public keys), bad things may happen.

There are two operations one can do with the keys. The signature
operation takes a message and a private key, and creates a signature for
the message. A signature is some string of bits, usually at most a few
thousand bits or a few hundred octets. Unlike paper-and-ink signatures,
the digital signature depends on the message, so one can't cut it out of
context and glue it to a different message.

The verification operation takes a public key, a message, and a string
that is claimed to be a signature on the message, and returns true or
false. If it returns true, that means that the three input values
matched, and the verifier can be sure that someone went through with the
1536
signature operation on that very message, and that the ``someone'' also
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
knows the private key corresponding to the public key.

The desired properties of a digital signature algorithm are as follows:
Given the public key and pairs of messages and valid signatures on them,
it should be hard to compute the private key, and it should also be hard
to create a new message and signature that is accepted by the
verification operation.

Besides signing meaningful messages, digital signatures can be used for
authorization. A server can be configured with a public key, such that
any client that connects to the service is given a random nonce message.
If the server gets a reply with a correct signature matching the nonce
message and the configured public key, the client is granted access. So
1550
the configuration of the server can be understood as ``grant access to
1551
whoever knows the private key corresponding to this particular public
1552
key, and to no others''.
1553

Niels Möller's avatar
Niels Möller committed
1554
1555
1556
1557
1558
1559
1560
1561

@menu
* RSA::                         The RSA public key algorithm.
* DSA::                         The DSA digital signature algorithm.
@end menu

@node RSA, DSA, Public-key algorithms, Public-key algorithms
@comment  node-name,  next,  previous,  up
1562
1563
@subsection @acronym{RSA}

Niels Möller's avatar
Niels Möller committed
1564
1565
1566
The @acronym{RSA} algorithm was the first practical digital signature
algorithm that was constructed. It was described 1978 in a paper by
Ronald Rivest, Adi Shamir and L.M. Adleman, and the technique was also
1567
1568
patented in the @acronym{USA} in 1983. The patent expired on September 20, 2000, and since
that day, @acronym{RSA} can be used freely, even in the @acronym{USA}.
1569

1570
It's remarkably simple to describe the trapdoor function behind
1571
@acronym{RSA}. The ``one-way''-function used is
1572
1573
1574
1575
1576
1577
1578

@example
F(x) = x^e mod n
@end example

I.e. raise x to the @code{e}:th power, while discarding all multiples of
@code{n}. The pair of numbers @code{n} and @code{e} is the public key.
1579
@code{e} can be quite small, even @code{e = 3} has been used, although
1580
1581
1582
1583
1584
1585
1586
slightly larger numbers are recommended. @code{n} should be about 1000
bits or larger.

If @code{n} is large enough, and properly chosen, the inverse of F,
the computation of @code{e}:th roots modulo @code{n}, is very difficult.
But, where's the trapdoor?

Niels Möller's avatar
Niels Möller committed
1587
Let's first look at how @acronym{RSA} key-pairs are generated. First
1588
1589
1590
@code{n} is chosen as the product of two large prime numbers @code{p}
and @code{q} of roughly the same size (so if @code{n} is 1000 bits,
@code{p} and @code{q} are about 500 bits each). One also computes the
Niels Möller's avatar
Niels Möller committed
1591
1592
number @code{phi = (p-1)(q-1)}, in mathematical speak, @code{phi} is the
order of the multiplicative group of integers modulo n.
1593

Niels Möller's avatar
Niels Möller committed
1594
Next, @code{e} is chosen. It must have no factors in common with @code{phi} (in
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
particular, it must be odd), but can otherwise be chosen more or less
randomly. @code{e = 65537} is a popular choice, because it makes raising
to the @code{e}:th power particularly efficient, and being prime, it
usually has no factors common with @code{phi}.

Finally, a number @code{d}, @code{d < n} is computed such that @code{e d
mod phi = 1}. It can be shown that such a number exists (this is why
@code{e} and @code{phi} must have no common factors), and that for all x,

@example
(x^e)^d mod n = x^(ed) mod n = (x^d)^e mod n = x
@end example

Using Euclid's algorithm, @code{d} can be computed quite easily from
@code{phi} and @code{e}. But it is still hard to get @code{d} without
knowing @code{phi}, which depends on the factorization of @code{n}.

So @code{d} is the trapdoor, if we know @code{d} and @code{y = F(x)}, we can
recover x as @code{y^d mod n}. @code{d} is also the private half of
Niels Möller's avatar
Niels Möller committed
1614
the @acronym{RSA} key-pair.
1615
1616
1617
1618
1619

The most common signature operation for @acronym{RSA} is defined in
@cite{PKCS#1}, a specification by RSA Laboratories. The message to be
signed is first hashed using a cryptographic hash function, e.g.
@acronym{MD5} or @acronym{SHA1}. Next, some padding, the @acronym{ASN.1}
1620
``Algorithm Identifier'' for the hash function, and the message digest
1621
1622
itself, are concatenated and converted to a number @code{x}. The
signature is computed from @code{x} and the private key as @code{s = x^d
1623
mod n}@footnote{Actually, the computation is not done like this, it is
Niels Möller's avatar
Niels Möller committed
1624
done more efficiently using @code{p}, @code{q} and the Chinese remainder
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
theorem (@acronym{CRT}). But the result is the same.}. The signature, @code{s} is a
number of about the same size of @code{n}, and it usually encoded as a
sequence of octets, most significant octet first.

The verification operation is straight-forward, @code{x} is computed
from the message in the same way as above. Then @code{s^e mod n} is
computed, the operation returns true if and only if the result equals
@code{x}.

@subsection Nettle's @acronym{RSA} support

Nettle represents @acronym{RSA} keys using two structures that contain
large numbers (of type @code{mpz_t}).

@deftp {Context struct} {rsa_public_key} size n e
@code{size} is the size, in octets, of the modulo, and is used internally.
@code{n} and @code{e} is the public key.
@end deftp

@deftp {Context struct} {rsa_private_key} size d p q a b c
@code{size} is the size, in octets, of the modulo, and is used internally.
@code{d} is the secret exponent, but it is not actually used when
signing. Instead, the factors @code{p} and @code{q}, and the parameters
@code{a}, @code{b} and @code{c} are used. They are computed from @code{p},
Niels Möller's avatar
Niels Möller committed
1649
1650
@code{q} and @code{e} such that @code{a e mod (p - 1) = 1, b e mod (q -
1) = 1, c q mod p = 1}.
1651
1652
1653
1654
@end deftp

Before use, these structs must be initialized by calling one of

Niels Möller's avatar
Niels Möller committed
1655
1656
@deftypefun void rsa_public_key_init (struct rsa_public_key *@var{pub})
@deftypefunx void rsa_private_key_init (struct rsa_private_key *@var{key})
1657
1658
1659
1660
1661
1662
Calls @code{mpz_init} on all numbers in the key struct.
@end deftypefun

and when finished with them, the space for the numbers must be
deallocated by calling one of

Niels Möller's avatar
Niels Möller committed
1663
1664
@deftypefun void rsa_public_key_clear (struct rsa_public_key *@var{pub})
@deftypefunx void rsa_private_key_clear (struct rsa_private_key *@var{key})
1665
1666
1667
Calls @code{mpz_clear} on all numbers in the key struct.
@end deftypefun

1668
1669
In general, Nettle's @acronym{RSA} functions deviates from Nettle's ``no
memory allocation''-policy. Space for all the numbers, both in the key structs
1670
above, and temporaries, are allocated dynamically. For information on how
1671
1672
to customize allocation, see
@xref{Custom Allocation,,GMP Allocation,gmp, GMP Manual}.
Niels Möller's avatar
Niels Möller committed
1673

1674
When you have assigned values to the attributes of a key, you must call
Niels Möller's avatar
Niels Möller committed
1675

Niels Möller's avatar
Niels Möller committed
1676
1677
@deftypefun int rsa_public_key_prepare (struct rsa_public_key *@var{pub})
@deftypefunx int rsa_private_key_prepare (struct rsa_private_key *@var{key})
1678
Computes the octet size of the key (stored in the @code{size} attribute,
1679
and may also do other basic sanity checks. Returns one if successful, or
1680
1681
1682
1683
1684
1685
zero if the key can't be used, for instance if the modulo is smaller
than the minimum size specified by PKCS#1.
@end deftypefun

Before signing or verifying a message, you first hash it with the
appropriate hash function. You pass the hash function's context struct
Niels Möller's avatar
Niels Möller committed
1686
1687
1688
to the @acronym{RSA} signature function, and it will extract the message
digest and do the rest of the work. There are also alternative functions
that take the @acronym{MD5} or @acronym{SHA1} hash digest as argument.
1689
1690
1691

Creation and verification of signatures is done with the following functions:

Niels Möller's avatar
Niels Möller committed
1692
1693
@deftypefun void rsa_md5_sign (const struct rsa_private_key *@var{key}, struct md5_ctx *@var{hash}, mpz_t @var{signature})
@deftypefunx void rsa_sha1_sign (const struct rsa_private_key *@var{key}, struct sha1_ctx *@var{hash}, mpz_t @var{signature})
Niels Möller's avatar
Niels Möller committed
1694
@deftypefunx void rsa_sha256_sign (const struct rsa_private_key *@var{key}, struct sha256_ctx *@var{hash}, mpz_t @var{signature})
1695
1696
1697
1698
1699
The signature is stored in @var{signature} (which must have been
@code{mpz_init}:ed earlier). The hash context is reset so that it can be
used for new messages.
@end deftypefun

Niels Möller's avatar
Niels Möller committed
1700
1701
@deftypefun void rsa_md5_sign_digest (const struct rsa_private_key *@var{key}, const uint8_t *@var{digest}, mpz_t @var{signature})
@deftypefunx void rsa_sha1_sign_digest (const struct rsa_private_key *@var{key}, const uint8_t *@var{digest}, mpz_t @var{signature});
Niels Möller's avatar