sha256-compress.c 6.24 KB
Newer Older
1
/* sha256-compress.c
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

   The compression function of the sha256 hash function.

   Copyright (C) 2001, 2010 Niels Möller

   This file is part of GNU Nettle.

   GNU Nettle is free software: you can redistribute it and/or
   modify it under the terms of either:

     * the GNU Lesser General Public License as published by the Free
       Software Foundation; either version 3 of the License, or (at your
       option) any later version.

   or

     * the GNU General Public License as published by the Free
       Software Foundation; either version 2 of the License, or (at your
       option) any later version.

   or both in parallel, as here.

   GNU Nettle is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received copies of the GNU General Public License and
   the GNU Lesser General Public License along with this program.  If
   not, see http://www.gnu.org/licenses/.
*/
33
34
35
36
37

#if HAVE_CONFIG_H
# include "config.h"
#endif

38
39
40
41
42
43
44
45
46
47
48
49
50
#ifndef SHA256_DEBUG
# define SHA256_DEBUG 0
#endif

#if SHA256_DEBUG
# include <stdio.h>
# define DEBUG(i) \
  fprintf(stderr, "%2d: %8x %8x %8x %8x %8x %8x %8x %8x\n", \
	  i, A, B, C, D ,E, F, G, H)
#else
# define DEBUG(i)
#endif

51
52
53
54
#include <assert.h>
#include <stdlib.h>
#include <string.h>

55
#include "sha2.h"
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

#include "macros.h"

/* A block, treated as a sequence of 32-bit words. */
#define SHA256_DATA_LENGTH 16

/* The SHA256 functions. The Choice function is the same as the SHA1
   function f1, and the majority function is the same as the SHA1 f3
   function. They can be optimized to save one boolean operation each
   - thanks to Rich Schroeppel, rcs@cs.arizona.edu for discovering
   this */

/* #define Choice(x,y,z) ( ( (x) & (y) ) | ( ~(x) & (z) ) ) */
#define Choice(x,y,z)   ( (z) ^ ( (x) & ( (y) ^ (z) ) ) ) 
/* #define Majority(x,y,z) ( ((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)) ) */
#define Majority(x,y,z) ( ((x) & (y)) ^ ((z) & ((x) ^ (y))) )

Niels Möller's avatar
Niels Möller committed
73
74
#define S0(x) (ROTL32(30,(x)) ^ ROTL32(19,(x)) ^ ROTL32(10,(x))) 
#define S1(x) (ROTL32(26,(x)) ^ ROTL32(21,(x)) ^ ROTL32(7,(x)))
75

Niels Möller's avatar
Niels Möller committed
76
77
#define s0(x) (ROTL32(25,(x)) ^ ROTL32(14,(x)) ^ ((x) >> 3))
#define s1(x) (ROTL32(15,(x)) ^ ROTL32(13,(x)) ^ ((x) >> 10))
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

/* The initial expanding function.  The hash function is defined over an
   64-word expanded input array W, where the first 16 are copies of the input
   data, and the remaining 64 are defined by

        W[ t ] = s1(W[t-2]) + W[t-7] + s0(W[i-15]) + W[i-16]

   This implementation generates these values on the fly in a circular
   buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
   optimization.
*/

#define EXPAND(W,i) \
( W[(i) & 15 ] += (s1(W[((i)-2) & 15]) + W[((i)-7) & 15] + s0(W[((i)-15) & 15])) )

/* The prototype SHA sub-round.  The fundamental sub-round is:

        T1 = h + S1(e) + Choice(e,f,g) + K[t] + W[t]
	T2 = S0(a) + Majority(a,b,c)
	a' = T1+T2
	b' = a
	c' = b
	d' = c
	e' = d + T1
	f' = e
	g' = f
	h' = g

   but this is implemented by unrolling the loop 8 times and renaming
   the variables
   ( h, a, b, c, d, e, f, g ) = ( a, b, c, d, e, f, g, h ) each
   iteration. */

/* It's crucial that DATA is only used once, as that argument will
 * have side effects. */
113
114
115
116
117
#define ROUND(a,b,c,d,e,f,g,h,k,data) do {	\
    h += S1(e) + Choice(e,f,g) + k + data;	\
    d += h;					\
    h += S0(a) + Majority(a,b,c);		\
  } while (0)
118

119
120
121
122
123
124
125
/* For fat builds */
#if HAVE_NATIVE_sha256_compress
void
_nettle_sha256_compress_c(uint32_t *state, const uint8_t *input, const uint32_t *k);
#define _nettle_sha256_compress _nettle_sha256_compress_c
#endif

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
void
_nettle_sha256_compress(uint32_t *state, const uint8_t *input, const uint32_t *k)
{
  uint32_t data[SHA256_DATA_LENGTH];
  uint32_t A, B, C, D, E, F, G, H;     /* Local vars */
  unsigned i;
  uint32_t *d;

  for (i = 0; i < SHA256_DATA_LENGTH; i++, input+= 4)
    {
      data[i] = READ_UINT32(input);
    }

  /* Set up first buffer and local data buffer */
  A = state[0];
  B = state[1];
  C = state[2];
  D = state[3];
  E = state[4];
  F = state[5];
  G = state[6];
  H = state[7];
  
  /* Heavy mangling */
  /* First 16 subrounds that act on the original data */

152
  DEBUG(-1);
153
154
  for (i = 0, d = data; i<16; i+=8, k += 8, d+= 8)
    {
155
156
      ROUND(A, B, C, D, E, F, G, H, k[0], d[0]); DEBUG(i);
      ROUND(H, A, B, C, D, E, F, G, k[1], d[1]); DEBUG(i+1);
157
158
159
160
      ROUND(G, H, A, B, C, D, E, F, k[2], d[2]);
      ROUND(F, G, H, A, B, C, D, E, k[3], d[3]);
      ROUND(E, F, G, H, A, B, C, D, k[4], d[4]);
      ROUND(D, E, F, G, H, A, B, C, k[5], d[5]);
161
162
      ROUND(C, D, E, F, G, H, A, B, k[6], d[6]); DEBUG(i+6);
      ROUND(B, C, D, E, F, G, H, A, k[7], d[7]); DEBUG(i+7);
163
164
165
166
    }
  
  for (; i<64; i += 16, k+= 16)
    {
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
      ROUND(A, B, C, D, E, F, G, H, k[ 0], EXPAND(data,  0)); DEBUG(i);
      ROUND(H, A, B, C, D, E, F, G, k[ 1], EXPAND(data,  1)); DEBUG(i+1);
      ROUND(G, H, A, B, C, D, E, F, k[ 2], EXPAND(data,  2)); DEBUG(i+2);
      ROUND(F, G, H, A, B, C, D, E, k[ 3], EXPAND(data,  3)); DEBUG(i+3);
      ROUND(E, F, G, H, A, B, C, D, k[ 4], EXPAND(data,  4)); DEBUG(i+4);
      ROUND(D, E, F, G, H, A, B, C, k[ 5], EXPAND(data,  5)); DEBUG(i+5);
      ROUND(C, D, E, F, G, H, A, B, k[ 6], EXPAND(data,  6)); DEBUG(i+6);
      ROUND(B, C, D, E, F, G, H, A, k[ 7], EXPAND(data,  7)); DEBUG(i+7);
      ROUND(A, B, C, D, E, F, G, H, k[ 8], EXPAND(data,  8)); DEBUG(i+8);
      ROUND(H, A, B, C, D, E, F, G, k[ 9], EXPAND(data,  9)); DEBUG(i+9);
      ROUND(G, H, A, B, C, D, E, F, k[10], EXPAND(data, 10)); DEBUG(i+10);
      ROUND(F, G, H, A, B, C, D, E, k[11], EXPAND(data, 11)); DEBUG(i+11);
      ROUND(E, F, G, H, A, B, C, D, k[12], EXPAND(data, 12)); DEBUG(i+12);
      ROUND(D, E, F, G, H, A, B, C, k[13], EXPAND(data, 13)); DEBUG(i+13);
      ROUND(C, D, E, F, G, H, A, B, k[14], EXPAND(data, 14)); DEBUG(i+14);
      ROUND(B, C, D, E, F, G, H, A, k[15], EXPAND(data, 15)); DEBUG(i+15);
183
184
185
186
187
188
189
190
191
192
193
    }

  /* Update state */
  state[0] += A;
  state[1] += B;
  state[2] += C;
  state[3] += D;
  state[4] += E;
  state[5] += F;
  state[6] += G;
  state[7] += H;
194
195
196
197
198
#if SHA256_DEBUG
  fprintf(stderr, "99: %8x %8x %8x %8x %8x %8x %8x %8x\n",
	  state[0], state[1], state[2], state[3],
	  state[4], state[5], state[6], state[7]);
#endif
199
}