bignum-random-prime.c 14.7 KB
Newer Older
1
2
3
4
5
6
7
/* bignum-random-prime.c
 *
 * Generation of random provable primes.
 */

/* nettle, low-level cryptographics library
 *
Niels Möller's avatar
Niels Möller committed
8
 * Copyright (C) 2010 Niels Möller
9
10
11
12
13
14
15
16
17
18
19
20
21
 *  
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
 * The nettle library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with the nettle library; see the file COPYING.LIB.  If not, write to
22
23
 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
 * MA 02111-1301, USA.
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
 */

#if HAVE_CONFIG_H
# include "config.h"
#endif

#ifndef RANDOM_PRIME_VERBOSE
#define RANDOM_PRIME_VERBOSE 0
#endif

#include <assert.h>
#include <stdlib.h>

#if RANDOM_PRIME_VERBOSE
#include <stdio.h>
#define VERBOSE(x) (fputs((x), stderr))
#else
#define VERBOSE(x)
#endif

#include "bignum.h"

#include "macros.h"

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
/* Use a table of p_2 = 3 to p_{172} = 1021, used for sieving numbers
   of up to 20 bits. */

#define NPRIMES 171
#define TRIAL_DIV_BITS 20
#define TRIAL_DIV_MASK ((1 << TRIAL_DIV_BITS) - 1)

/* A 20-bit number x is divisible by p iff

     ((x * inverse) & TRIAL_DIV_MASK) <= limit
*/
struct trial_div_info {
  uint32_t inverse; /* p^{-1} (mod 2^20) */
  uint32_t limit;   /* floor( (2^20 - 1) / p) */
};

static const uint16_t
primes[NPRIMES] = {
  3,5,7,11,13,17,19,23,
  29,31,37,41,43,47,53,59,
  61,67,71,73,79,83,89,97,
  101,103,107,109,113,127,131,137,
  139,149,151,157,163,167,173,179,
  181,191,193,197,199,211,223,227,
  229,233,239,241,251,257,263,269,
  271,277,281,283,293,307,311,313,
  317,331,337,347,349,353,359,367,
  373,379,383,389,397,401,409,419,
  421,431,433,439,443,449,457,461,
  463,467,479,487,491,499,503,509,
  521,523,541,547,557,563,569,571,
  577,587,593,599,601,607,613,617,
  619,631,641,643,647,653,659,661,
  673,677,683,691,701,709,719,727,
  733,739,743,751,757,761,769,773,
  787,797,809,811,821,823,827,829,
  839,853,857,859,863,877,881,883,
  887,907,911,919,929,937,941,947,
  953,967,971,977,983,991,997,1009,
  1013,1019,1021,
};

static const uint32_t
prime_square[NPRIMES+1] = {
  9,25,49,121,169,289,361,529,
  841,961,1369,1681,1849,2209,2809,3481,
  3721,4489,5041,5329,6241,6889,7921,9409,
  10201,10609,11449,11881,12769,16129,17161,18769,
  19321,22201,22801,24649,26569,27889,29929,32041,
  32761,36481,37249,38809,39601,44521,49729,51529,
  52441,54289,57121,58081,63001,66049,69169,72361,
  73441,76729,78961,80089,85849,94249,96721,97969,
  100489,109561,113569,120409,121801,124609,128881,134689,
  139129,143641,146689,151321,157609,160801,167281,175561,
  177241,185761,187489,192721,196249,201601,208849,212521,
  214369,218089,229441,237169,241081,249001,253009,259081,
  271441,273529,292681,299209,310249,316969,323761,326041,
  332929,344569,351649,358801,361201,368449,375769,380689,
  383161,398161,410881,413449,418609,426409,434281,436921,
  452929,458329,466489,477481,491401,502681,516961,528529,
  537289,546121,552049,564001,573049,579121,591361,597529,
  619369,635209,654481,657721,674041,677329,683929,687241,
  703921,727609,734449,737881,744769,769129,776161,779689,
  786769,822649,829921,844561,863041,877969,885481,896809,
  908209,935089,942841,954529,966289,982081,994009,1018081,
  1026169,1038361,1042441,1L<<20
114
115
};

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
static const struct trial_div_info
trial_div_table[NPRIMES] = {
  {699051,349525},{838861,209715},{748983,149796},{953251,95325},
  {806597,80659},{61681,61680},{772635,55188},{866215,45590},
  {180789,36157},{1014751,33825},{793517,28339},{1023001,25575},
  {48771,24385},{870095,22310},{217629,19784},{710899,17772},
  {825109,17189},{281707,15650},{502135,14768},{258553,14364},
  {464559,13273},{934875,12633},{1001449,11781},{172961,10810},
  {176493,10381},{203607,10180},{568387,9799},{788837,9619},
  {770193,9279},{1032063,8256},{544299,8004},{619961,7653},
  {550691,7543},{182973,7037},{229159,6944},{427445,6678},
  {701195,6432},{370455,6278},{90917,6061},{175739,5857},
  {585117,5793},{225087,5489},{298817,5433},{228877,5322},
  {442615,5269},{546651,4969},{244511,4702},{83147,4619},
  {769261,4578},{841561,4500},{732687,4387},{978961,4350},
  {133683,4177},{65281,4080},{629943,3986},{374213,3898},
  {708079,3869},{280125,3785},{641833,3731},{618771,3705},
  {930477,3578},{778747,3415},{623751,3371},{40201,3350},
  {122389,3307},{950371,3167},{1042353,3111},{18131,3021},
  {285429,3004},{549537,2970},{166487,2920},{294287,2857},
  {919261,2811},{636339,2766},{900735,2737},{118605,2695},
  {10565,2641},{188273,2614},{115369,2563},{735755,2502},
  {458285,2490},{914767,2432},{370513,2421},{1027079,2388},
  {629619,2366},{462401,2335},{649337,2294},{316165,2274},
  {484655,2264},{65115,2245},{326175,2189},{1016279,2153},
  {990915,2135},{556859,2101},{462791,2084},{844629,2060},
  {404537,2012},{457123,2004},{577589,1938},{638347,1916},
  {892325,1882},{182523,1862},{1002505,1842},{624371,1836},
  {69057,1817},{210787,1786},{558769,1768},{395623,1750},
  {992745,1744},{317855,1727},{384877,1710},{372185,1699},
  {105027,1693},{423751,1661},{408961,1635},{908331,1630},
  {74551,1620},{36933,1605},{617371,1591},{506045,1586},
  {24929,1558},{529709,1548},{1042435,1535},{31867,1517},
  {166037,1495},{928781,1478},{508975,1458},{4327,1442},
  {779637,1430},{742091,1418},{258263,1411},{879631,1396},
  {72029,1385},{728905,1377},{589057,1363},{348621,1356},
  {671515,1332},{710453,1315},{84249,1296},{959363,1292},
  {685853,1277},{467591,1274},{646643,1267},{683029,1264},
  {439927,1249},{254461,1229},{660713,1223},{554195,1220},
  {202911,1215},{753253,1195},{941457,1190},{776635,1187},
  {509511,1182},{986147,1156},{768879,1151},{699431,1140},
  {696417,1128},{86169,1119},{808997,1114},{25467,1107},
  {201353,1100},{708087,1084},{1018339,1079},{341297,1073},
  {434151,1066},{96287,1058},{950765,1051},{298257,1039},
  {675933,1035},{167731,1029},{815445,1027},
161
162
};

163
164
165
166
167
/* Element j gives the index of the first prime of size 3+j bits */
static uint8_t
prime_by_size[9] = {
  1,3,5,10,17,30,53,96,171
};
168
169

/* Combined Miller-Rabin test to the base a, and checking the
170
171
   conditions from Pocklington's theorem, nm1dq holds (n-1)/q, with q
   prime. */
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
static int
miller_rabin_pocklington(mpz_t n, mpz_t nm1, mpz_t nm1dq, mpz_t a)
{
  mpz_t r;
  mpz_t y;
  int is_prime = 0;

  /* Avoid the mp_bitcnt_t type for compatibility with older GMP
     versions. */
  unsigned k;
  unsigned j;

  VERBOSE(".");

  if (mpz_even_p(n) || mpz_cmp_ui(n, 3) < 0)
    return 0;

  mpz_init(r);
  mpz_init(y);

  k = mpz_scan1(nm1, 0);
  assert(k > 0);

  mpz_fdiv_q_2exp (r, nm1, k);

  mpz_powm(y, a, r, n);

  if (mpz_cmp_ui(y, 1) == 0 || mpz_cmp(y, nm1) == 0)
200
201
    goto passed_miller_rabin;
    
202
203
204
205
206
207
  for (j = 1; j < k; j++)
    {
      mpz_powm_ui (y, y, 2, n);

      if (mpz_cmp_ui (y, 1) == 0)
	break;
208

209
      if (mpz_cmp (y, nm1) == 0)
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
	{
	passed_miller_rabin:
	  /* We know that a^{n-1} = 1 (mod n)

	     Remains to check that gcd(a^{(n-1)/q} - 1, n) == 1 */      
	  VERBOSE("x");

	  mpz_powm(y, a, nm1dq, n);
	  mpz_sub_ui(y, y, 1);
	  mpz_gcd(y, y, n);
	  is_prime = mpz_cmp_ui (y, 1) == 0;
	  VERBOSE(is_prime ? "\n" : "");
	  break;
	}

225
226
227
228
229
230
231
232
    }

  mpz_clear(r);
  mpz_clear(y);

  return is_prime;
}

233
/* The most basic variant of Pocklingtons theorem:
234

235
   Assume that q^e | (n-1), with q prime. If we can find an a such that
236
237

     a^{n-1} = 1 (mod n)
238
     gcd(a^{(n-1)/q} - 1, n) = 1
239

240
   then any prime divisor p of n satisfies p = 1 (mod q^e).
241

242
243
244
   Proof (Cohen, 8.3.2): Assume p is a prime factor of n. The central
   idea of the proof is to consider the order, modulo p, of a. Denote
   this by d.
245

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
   a^{n-1} = 1 (mod n) implies a^{n-1} = 1 (mod p), hence d | (n-1).
   Next, the condition gcd(a^{(n-1)/q} - 1, n) = 1 implies that
   a^{(n-1)/q} != 1, hence d does not divide (n-1)/q. Since q is
   prime, this means that q^e | d.

   Finally, we have a^{p-1} = 1 (mod p), hence d | (p-1). So q^e | d |
   (p-1), which gives the desired result: p = 1 (mod q^e).


   * Variant, slightly stronger than Fact 4.59, HAC:

   Assume n = 1 + 2rq, q an odd prime, r <= 2q, and 

     a^{n-1} = 1 (mod n)
     gcd(a^{(n-1)/q} - 1, n) = 1

   Then n is prime.

   Proof: By Pocklington's theorem, any prime factor p satisfies p = 1
   (mod q). Neither 1 or q+1 are primes, hence p >= 1 + 2q. If n is
   composite, we have n >= (1+2q)^2. But the assumption r <= 2q
   implies n <= 1 + 4q^2, a contradiction.

   In bits, the requirement is that #n <= 2 #q, then

     r = (n-1)/2q < 2^{#n - #q} <= 2^#q = 2 2^{#q-1}< 2 q


   * Another variant with an extra test (Variant of Fact 4.42, HAC):

   Assume n = 1 + 2rq, n odd, q an odd prime, 8 q^3 >= n

     a^{n-1} = 1 (mod n)
     gcd(a^{(n-1)/q} - 1, n) = 1

   Also let x = floor(r / 2q), y = r mod 2q, 

   If y^2 - 4x is not a square, then n is prime.

   Proof (adapted from Maurer, Journal of Cryptology, 8 (1995)):

   Assume n is composite. There are at most two factors, both odd,

     n = (1+2m_1 q)(1+2m_2 q) = 1 + 4 m_1 m_2 q^2 + 2 (m_1 + m_2) q
     
   where we can assume m_1 >= m_2. Then the bound n <= 8 q^3 implies m_1
   m_2 < 2q, restricting (m_1, m_2) to the domain 0 < m_2 <
   sqrt(2q), 0 < m_1 < 2q / m_2.

   We have the bound

     m_1 + m_2 < 2q / m_2 + m_2 <= 2q + 1 (maximum value for m_2 = 1)

   And the case m_1 = 2q, m_2 = 1 can be excluded, because it gives n
   > 8q^3. So in fact, m_1 + m_2 < 2q.

   Next, write r = (n-1)/2q = 2 m_1 m_2 q + m_1 + m_2.
   
   If follows that m_1 + m_2 = y and m_1 m_2 = x. m_1 and m_2 are
   thus the roots of the equation

     m^2 - y m + x = 0

   which has integer roots iff y^2 - 4 x is the square of an integer.

   In bits, the requirement is that #n <= 3 #q, then

     n < 2^#n <= 2^{3 #q} = 8 2^{3 (#q-1)} < 8 q^3
314
315
316
*/

/* Generate a prime number p of size bits with 2 p0q dividing (p-1).
317
   p0 must be of size >= ceil(bits/3). The extra factor q can be
Niels Möller's avatar
Niels Möller committed
318
319
320
   omitted (then p0 and p0q should be equal). If top_bits_set is one,
   the topmost two bits are set to one, suitable for RSA primes. Also
   returns r = (p-1)/p0q. */
321
void
322
323
_nettle_generate_pocklington_prime (mpz_t p, mpz_t r,
				    unsigned bits, int top_bits_set, 
324
				    void *ctx, nettle_random_func *random, 
325
326
327
				    const mpz_t p0,
				    const mpz_t q,
				    const mpz_t p0q)
328
{
329
330
331
332
333
334
335
336
337
338
339
  mpz_t r_min, r_range, pm1, a, e;
  int need_square_test;
  unsigned p0_bits;
  mpz_t x, y, p04;

  p0_bits = mpz_sizeinbase (p0, 2);

  assert (bits <= 3*p0_bits);
  assert (bits > p0_bits);

  need_square_test = (bits > 2 * p0_bits);
340

341
342
  mpz_init (r_min);
  mpz_init (r_range);
343
344
345
  mpz_init (pm1);
  mpz_init (a);

346
347
348
349
350
351
352
353
354
355
356
  if (need_square_test)
    {
      mpz_init (x);
      mpz_init (y);
      mpz_init (p04);
      mpz_mul_2exp (p04, p0, 2);
    }

  if (q)
    mpz_init (e);

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
  if (top_bits_set)
    {
      /* i = floor (2^{bits-3} / p0q), then 3I + 3 <= r <= 4I, with I
	 - 2 possible values. */
      mpz_set_ui (r_min, 1);
      mpz_mul_2exp (r_min, r_min, bits-3);
      mpz_fdiv_q (r_min, r_min, p0q);
      mpz_sub_ui (r_range, r_min, 2);
      mpz_mul_ui (r_min, r_min, 3);
      mpz_add_ui (r_min, r_min, 3);
    }
  else
    {
      /* i = floor (2^{bits-2} / p0q), I + 1 <= r <= 2I */
      mpz_set_ui (r_range, 1);
      mpz_mul_2exp (r_range, r_range, bits-2);
      mpz_fdiv_q (r_range, r_range, p0q);
      mpz_add_ui (r_min, r_range, 1);
    }
376

377
  for (;;)
378
    {
379
      uint8_t buf[1];
380

381
382
      nettle_mpz_random (r, ctx, random, r_range);
      mpz_add (r, r, r_min);
383

384
385
386
387
      /* Set p = 2*r*p0q + 1 */
      mpz_mul_2exp(r, r, 1);
      mpz_mul (pm1, r, p0q);
      mpz_add_ui (p, pm1, 1);
388

389
390
391
392
393
394
395
396
397
398
399
400
401
      assert(mpz_sizeinbase(p, 2) == bits);

      /* Should use GMP trial division interface when that
	 materializes, we don't need any testing beyond trial
	 division. */
      if (!mpz_probab_prime_p (p, 1))
	continue;

      random(ctx, sizeof(buf), buf);
	  
      mpz_set_ui (a, buf[0] + 2);

      if (q)
402
403
	{
	  mpz_mul (e, r, q);
404
405
406
407
408
409
410
411
412
	  if (!miller_rabin_pocklington(p, pm1, e, a))
	    continue;

	  if (need_square_test)
	    {
	      /* Our e corresponds to 2r in the theorem */
	      mpz_tdiv_qr (x, y, e, p04);
	      goto square_test;
	    }
413
	}
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
      else
	{
	  if (!miller_rabin_pocklington(p, pm1, r, a))
	    continue;
	  if (need_square_test)
	    {
	      mpz_tdiv_qr (x, y, r, p04);
	    square_test:
	      /* We have r' = 2r, x = floor (r/2q) = floor(r'/2q),
		 and y' = r' - x 4q = 2 (r - x 2q) = 2y.

		 Then y^2 - 4x is a square iff y'^2 - 16 x is a
		 square. */
		 
	      mpz_mul (y, y, y);
	      mpz_submul_ui (y, x, 16);
	      if (mpz_perfect_square_p (y))
		continue;
	    }
	}

      /* If we passed all the tests, we have found a prime. */
      break;
437
    }
438
439
  mpz_clear (r_min);
  mpz_clear (r_range);
440
441
  mpz_clear (pm1);
  mpz_clear (a);
442
443
444
445
446
447
448
449
450

  if (need_square_test)
    {
      mpz_clear (x);
      mpz_clear (y);
      mpz_clear (p04);
    }
  if (q)
    mpz_clear (e);
451
}
452

453
454
/* Generate random prime of a given size. Maurer's algorithm (Alg.
   6.42 Handbook of applied cryptography), but with ratio = 1/2 (like
455
   the variant in fips186-3). */
456
void
457
nettle_random_prime(mpz_t p, unsigned bits, int top_bits_set,
458
459
		    void *random_ctx, nettle_random_func *random,
		    void *progress_ctx, nettle_progress_func *progress)
460
461
462
463
464
465
466
{
  assert (bits >= 3);
  if (bits <= 10)
    {
      unsigned first;
      unsigned choices;
      uint8_t buf;
467

468
469
470
      assert (!top_bits_set);

      random (random_ctx, sizeof(buf), &buf);
471

472
473
474
475
476
477
478
479
480
481
482
      first = prime_by_size[bits-3];
      choices = prime_by_size[bits-2] - first;
      
      mpz_set_ui (p, primes[first + buf % choices]);
    }
  else if (bits <= 20)
    {
      unsigned long highbit;
      uint8_t buf[3];
      unsigned long x;
      unsigned j;
483
      
484
485
      assert (!top_bits_set);

486
487
488
      highbit = 1L << (bits - 1);

    again:
489
      random (random_ctx, sizeof(buf), buf);
490
491
492
493
      x = READ_UINT24(buf);
      x &= (highbit - 1);
      x |= highbit | 1;

494
495
496
497
498
499
500
      for (j = 0; prime_square[j] <= x; j++)
	{
	  unsigned q = x * trial_div_table[j].inverse & TRIAL_DIV_MASK;
	  if (q <= trial_div_table[j].limit)
	    goto again;
	}
      mpz_set_ui (p, x);
501
502
503
    }
  else
    {
504
      mpz_t q, r;
505
506

      mpz_init (q);
507
      mpz_init (r);
508

509
510
511
     /* Bit size ceil(k/2) + 1, slightly larger than used in Alg. 4.62
	in Handbook of Applied Cryptography (which seems to be
	incorrect for odd k). */
512
513
      nettle_random_prime (q, (bits+3)/2, 0, random_ctx, random,
			   progress_ctx, progress);
514

515
516
      _nettle_generate_pocklington_prime (p, r, bits, top_bits_set,
					  random_ctx, random,
517
518
					  q, NULL, q);
      
519
520
521
      if (progress)
	progress (progress_ctx, 'x');

522
      mpz_clear (q);
523
      mpz_clear (r);
524
525
    }
}