fat-x86_64.c 7.92 KB
Newer Older
1
/* fat-x86_64.c
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

   Copyright (C) 2015 Niels Möller

   This file is part of GNU Nettle.

   GNU Nettle is free software: you can redistribute it and/or
   modify it under the terms of either:

     * the GNU Lesser General Public License as published by the Free
       Software Foundation; either version 3 of the License, or (at your
       option) any later version.

   or

     * the GNU General Public License as published by the Free
       Software Foundation; either version 2 of the License, or (at your
       option) any later version.

   or both in parallel, as here.

   GNU Nettle is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received copies of the GNU General Public License and
   the GNU Lesser General Public License along with this program.  If
   not, see http://www.gnu.org/licenses/.
*/

#if HAVE_CONFIG_H
# include "config.h"
#endif

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
39
#include <string.h>
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

#include "nettle-types.h"

#include "aes-internal.h"

/* Fat library initialization works as follows. The main function is
   fat_init. It tries to do initialization only once, but since it is
   idempotent and pointer updates are atomic on x86_64, there's no
   harm if it is in some cases called multiple times from several
   threads.

   The fat_init function checks the cpuid flags, and sets function
   pointers, e.g, _aes_encrypt_vec, to point to the appropriate
   implementation.

   To get everything hooked in, we use a belt-and-suspenders approach.

57
58
59
   We try to register fat_init as a constructor function to be called
   at load time. If this is unavailable or non-working, we instead
   arrange fat_init to be called lazily.
60
61
62
63
64

   For the actual indirection, there are two cases. 

   If ifunc support is available, function pointers are statically
   initialized to NULL, and we register resolver functions, e.g.,
65
   _aes_encrypt_resolve, which call fat_init, and then return the
66
67
68
69
   function pointer, e.g., the value of _aes_encrypt_vec.

   If ifunc is not available, we have to define a wrapper function to
   jump via the function pointer. (FIXME: For internal calls, we could
70
71
   do this as a macro). We statically initialize each function pointer
   to point to a special initialization function, e.g.,
72
73
74
75
76
77
78
79
80
81
82
   _aes_encrypt_init, which calls fat_init, and then invokes the right
   function. This way, all pointers are setup correctly at the first
   call to any fat function.
*/

#if HAVE_LINK_IFUNC
# define IFUNC(resolve) __attribute__ ((ifunc (resolve)))
#else
# define IFUNC(resolve)
#endif

83
84
85
86
87
88
89
#if HAVE_GCC_ATTRIBUTE
# define CONSTRUCTOR __attribute__ ((constructor))
#elif defined (__sun)
# pragma init(fat_init)
# define CONSTRUCTOR
#endif

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
void _nettle_cpuid (uint32_t input, uint32_t regs[4]);

typedef void void_func (void);

typedef void aes_crypt_internal_func (unsigned rounds, const uint32_t *keys,
				      const struct aes_table *T,
				      size_t length, uint8_t *dst,
				      const uint8_t *src);
aes_crypt_internal_func _aes_encrypt IFUNC ("_aes_encrypt_resolve");
aes_crypt_internal_func _nettle_aes_encrypt_x86_64;
aes_crypt_internal_func _nettle_aes_encrypt_aesni;

aes_crypt_internal_func _aes_decrypt IFUNC ("_aes_decrypt_resolve");
aes_crypt_internal_func _nettle_aes_decrypt_x86_64;
aes_crypt_internal_func _nettle_aes_decrypt_aesni;

106
107
108
109
110
111
112
typedef void *(memxor_func)(void *dst_in, const void *src_in, size_t n);

/* FIXME: Fix fat name-mangling to get _nettle prefix. */
memxor_func nettle_memxor IFUNC ("_memxor_resolve");
memxor_func nettle_memxor_x86_64;
memxor_func nettle_memxor_sse2;

113
114
115
116
117
118
119
120
121
122
#if HAVE_LINK_IFUNC
#define _aes_encrypt_init NULL
#define _aes_decrypt_init NULL
#else
static aes_crypt_internal_func _aes_encrypt_init;
static aes_crypt_internal_func _aes_decrypt_init;
#endif

static aes_crypt_internal_func *_aes_encrypt_vec = _aes_encrypt_init;
static aes_crypt_internal_func *_aes_decrypt_vec = _aes_decrypt_init;
123
static memxor_func *_memxor_vec = nettle_memxor_x86_64;
124
125
126
127
128

/* This function should usually be called only once, at startup. But
   it is idempotent, and on x86, pointer updates are atomic, so
   there's no danger if it is called simultaneously from multiple
   threads. */
129
static void CONSTRUCTOR
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
fat_init (void)
{
  static volatile int initialized = 0;
  uint32_t cpuid_data[4];
  int verbose;
  if (initialized)
    return;

  /* FIXME: Replace all getenv calls by getenv_secure? */
  verbose = getenv ("NETTLE_FAT_VERBOSE") != NULL;
  if (verbose)
    fprintf (stderr, "libnettle: fat library initialization.\n");

  _nettle_cpuid (1, cpuid_data);
  if (verbose)
    fprintf (stderr, "libnettle: cpuid 1: %08x, %08x, %08x, %08x\n",
	     cpuid_data[0], cpuid_data[1], cpuid_data[2], cpuid_data[3]);

  if (cpuid_data[2] & 0x02000000)
    {
      if (verbose)
	fprintf (stderr, "libnettle: aes instructions available.\n");
      _aes_encrypt_vec = _nettle_aes_encrypt_aesni;
      _aes_decrypt_vec = _nettle_aes_decrypt_aesni;
    }
  else
    {
      if (verbose)
	fprintf (stderr, "libnettle: aes instructions not available.\n");
      _aes_encrypt_vec = _nettle_aes_encrypt_x86_64;
      _aes_decrypt_vec = _nettle_aes_decrypt_x86_64;
    }
162

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
  _nettle_cpuid (0, cpuid_data);
  if (memcmp(&cpuid_data[1], "Genu", 4) == 0 &&
      memcmp(&cpuid_data[3], "ineI", 4) == 0 &&
      memcmp(&cpuid_data[2], "ntel", 4) == 0)
    {
      if (verbose)
	fprintf (stderr, "libnettle: intel SSE2 will be used for XOR.\n");
      _memxor_vec = nettle_memxor_sse2;
    }
  else
    {
      if (verbose)
	fprintf (stderr, "libnettle: intel SSE2 will not be used for XOR.\n");
      _memxor_vec = nettle_memxor_x86_64;
    }

179
180
181
  /* The x86_64 architecture should always make stores visible in the
     right order to other processors (except for non-temporal stores
     and the like). So we don't need any memory barrier. */
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
  initialized = 1;
}

#if HAVE_LINK_IFUNC

static void_func *
_aes_encrypt_resolve (void)
{
  if (getenv ("NETTLE_FAT_VERBOSE"))
    fprintf (stderr, "libnettle: _aes_encrypt_resolve\n");
  fat_init ();
  return (void_func *) _aes_encrypt_vec;
}

static void_func *
_aes_decrypt_resolve (void)
{
  if (getenv ("NETTLE_FAT_VERBOSE"))
    fprintf (stderr, "libnettle: _aes_decrypt_resolve\n");
  fat_init ();
  return (void_func *) _aes_decrypt_vec;
}

205
206
207
208
209
210
211
212
213
static void_func *
_memxor_resolve (void)
{
  if (getenv ("NETTLE_FAT_VERBOSE"))
    fprintf (stderr, "libnettle: _memxor_resolve\n");
  fat_init ();
  return (void_func *) _memxor_vec;
}

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#else /* !HAVE_LINK_IFUNC */

/* We need wrapper functions jumping via the function pointer. */
void
_aes_encrypt (unsigned rounds, const uint32_t *keys,
	      const struct aes_table *T,
	      size_t length, uint8_t *dst,
	      const uint8_t *src)
{
  _aes_encrypt_vec (rounds, keys, T, length, dst, src);
}

static void
_aes_encrypt_init (unsigned rounds, const uint32_t *keys,
		   const struct aes_table *T,
		   size_t length, uint8_t *dst,
		   const uint8_t *src)
{
  if (getenv ("NETTLE_FAT_VERBOSE"))
    fprintf (stderr, "libnettle: _aes_encrypt_init\n");
  fat_init ();
  assert (_aes_encrypt_vec != _aes_encrypt_init);
  _aes_encrypt (rounds, keys, T, length, dst, src);
}

void
_aes_decrypt (unsigned rounds, const uint32_t *keys,
	      const struct aes_table *T,
	      size_t length, uint8_t *dst,
	      const uint8_t *src)
{
  _aes_decrypt_vec (rounds, keys, T, length, dst, src);
}

static void
_aes_decrypt_init (unsigned rounds, const uint32_t *keys,
		   const struct aes_table *T,
		   size_t length, uint8_t *dst,
		   const uint8_t *src)
{
  if (getenv ("NETTLE_FAT_VERBOSE"))
    fprintf (stderr, "libnettle: _aes_decrypt_init\n");
  fat_init ();
  assert (_aes_decrypt_vec != _aes_decrypt_init);
  _aes_decrypt (rounds, keys, T, length, dst, src);
}

261
262
263
264
265
266
267
/* FIXME: Missing _memxor_init. */
void *
memxor(void *dst_in, const void *src_in, size_t n)
{
  return _memxor_vec (dst_in, src_in, n);
}

268
#endif /* !HAVE_LINK_IFUNC */