Commit 05f23a55 authored by Niels Möller's avatar Niels Möller
Browse files

New files.

Rev: src/nettle/examples/getopt.c:1.1
Rev: src/nettle/examples/getopt.h:1.1
Rev: src/nettle/examples/getopt1.c:1.1
parent 736ca68b
/* Getopt for GNU.
NOTE: getopt is now part of the C library, so if you don't know what
"Keep this file name-space clean" means, talk to
before changing it!
Copyright (C) 1987,88,89,90,91,92,93,94,95,96,98,99,2000,2001
Free Software Foundation, Inc.
This file is part of the GNU C Library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
/* This tells Alpha OSF/1 not to define a getopt prototype in <stdio.h>.
Ditto for AIX 3.2 and <stdlib.h>. */
#ifndef _NO_PROTO
# define _NO_PROTO
# include <config.h>
#if !defined __STDC__ || !__STDC__
/* This is a separate conditional since some stdc systems
reject `defined (const)'. */
# ifndef const
# define const
# endif
#include <stdio.h>
/* Comment out all this code if we are using the GNU C Library, and are not
actually compiling the library itself. This code is part of the GNU C
Library, but also included in many other GNU distributions. Compiling
and linking in this code is a waste when using the GNU C library
(especially if it is a shared library). Rather than having every GNU
program understand `configure --with-gnu-libc' and omit the object files,
it is simpler to just do this in the source for each such file. */
#if !defined _LIBC && defined __GLIBC__ && __GLIBC__ >= 2
# include <gnu-versions.h>
# define ELIDE_CODE
# endif
#ifndef ELIDE_CODE
/* This needs to come after some library #include
to get __GNU_LIBRARY__ defined. */
#ifdef __GNU_LIBRARY__
/* Don't include stdlib.h for non-GNU C libraries because some of them
contain conflicting prototypes for getopt. */
# include <stdlib.h>
# include <unistd.h>
#endif /* GNU C library. */
#ifdef VMS
# include <unixlib.h>
# if HAVE_STRING_H - 0
# include <string.h>
# endif
#ifndef _
/* This is for other GNU distributions with internationalized messages. */
# if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
# include <libintl.h>
# ifndef _
# define _(msgid) gettext (msgid)
# endif
# else
# define _(msgid) (msgid)
# endif
/* This version of `getopt' appears to the caller like standard Unix `getopt'
but it behaves differently for the user, since it allows the user
to intersperse the options with the other arguments.
As `getopt' works, it permutes the elements of ARGV so that,
when it is done, all the options precede everything else. Thus
all application programs are extended to handle flexible argument order.
Setting the environment variable POSIXLY_CORRECT disables permutation.
Then the behavior is completely standard.
GNU application programs can use a third alternative mode in which
they can distinguish the relative order of options and other arguments. */
#include "getopt.h"
/* For communication from `getopt' to the caller.
When `getopt' finds an option that takes an argument,
the argument value is returned here.
Also, when `ordering' is RETURN_IN_ORDER,
each non-option ARGV-element is returned here. */
char *optarg;
/* Index in ARGV of the next element to be scanned.
This is used for communication to and from the caller
and for communication between successive calls to `getopt'.
On entry to `getopt', zero means this is the first call; initialize.
When `getopt' returns -1, this is the index of the first of the
non-option elements that the caller should itself scan.
Otherwise, `optind' communicates from one call to the next
how much of ARGV has been scanned so far. */
/* 1003.2 says this must be 1 before any call. */
int optind = 1;
/* Formerly, initialization of getopt depended on optind==0, which
causes problems with re-calling getopt as programs generally don't
know that. */
int __getopt_initialized;
/* The next char to be scanned in the option-element
in which the last option character we returned was found.
This allows us to pick up the scan where we left off.
If this is zero, or a null string, it means resume the scan
by advancing to the next ARGV-element. */
static char *nextchar;
/* Callers store zero here to inhibit the error message
for unrecognized options. */
int opterr = 1;
/* Set to an option character which was unrecognized.
This must be initialized on some systems to avoid linking in the
system's own getopt implementation. */
int optopt = '?';
/* Describe how to deal with options that follow non-option ARGV-elements.
If the caller did not specify anything,
the default is REQUIRE_ORDER if the environment variable
POSIXLY_CORRECT is defined, PERMUTE otherwise.
REQUIRE_ORDER means don't recognize them as options;
stop option processing when the first non-option is seen.
This is what Unix does.
This mode of operation is selected by either setting the environment
variable POSIXLY_CORRECT, or using `+' as the first character
of the list of option characters.
PERMUTE is the default. We permute the contents of ARGV as we scan,
so that eventually all the non-options are at the end. This allows options
to be given in any order, even with programs that were not written to
expect this.
RETURN_IN_ORDER is an option available to programs that were written
to expect options and other ARGV-elements in any order and that care about
the ordering of the two. We describe each non-option ARGV-element
as if it were the argument of an option with character code 1.
Using `-' as the first character of the list of option characters
selects this mode of operation.
The special argument `--' forces an end of option-scanning regardless
of the value of `ordering'. In the case of RETURN_IN_ORDER, only
`--' can cause `getopt' to return -1 with `optind' != ARGC. */
static enum
} ordering;
/* Value of POSIXLY_CORRECT environment variable. */
static char *posixly_correct;
#ifdef __GNU_LIBRARY__
/* We want to avoid inclusion of string.h with non-GNU libraries
because there are many ways it can cause trouble.
On some systems, it contains special magic macros that don't work
in GCC. */
# include <string.h>
# define my_index strchr
# include <string.h>
# else
# include <strings.h>
# endif
/* Avoid depending on library functions or files
whose names are inconsistent. */
#ifndef getenv
extern char *getenv ();
static char *
my_index (str, chr)
const char *str;
int chr;
while (*str)
if (*str == chr)
return (char *) str;
return 0;
/* If using GCC, we can safely declare strlen this way.
If not using GCC, it is ok not to declare it. */
#ifdef __GNUC__
/* Note that Motorola Delta 68k R3V7 comes with GCC but not stddef.h.
That was relevant to code that was here before. */
# if (!defined __STDC__ || !__STDC__) && !defined strlen
/* gcc with -traditional declares the built-in strlen to return int,
and has done so at least since version 2.4.5. -- rms. */
extern int strlen (const char *);
# endif /* not __STDC__ */
#endif /* __GNUC__ */
#endif /* not __GNU_LIBRARY__ */
/* Handle permutation of arguments. */
/* Describe the part of ARGV that contains non-options that have
been skipped. `first_nonopt' is the index in ARGV of the first of them;
`last_nonopt' is the index after the last of them. */
static int first_nonopt;
static int last_nonopt;
#ifdef _LIBC
/* Bash 2.0 gives us an environment variable containing flags
indicating ARGV elements that should not be considered arguments. */
/* Defined in getopt_init.c */
extern char *__getopt_nonoption_flags;
static int nonoption_flags_max_len;
static int nonoption_flags_len;
static int original_argc;
static char *const *original_argv;
/* Make sure the environment variable bash 2.0 puts in the environment
is valid for the getopt call we must make sure that the ARGV passed
to getopt is that one passed to the process. */
static void
__attribute__ ((unused))
store_args_and_env (int argc, char *const *argv)
/* XXX This is no good solution. We should rather copy the args so
that we can compare them later. But we must not use malloc(3). */
original_argc = argc;
original_argv = argv;
# ifdef text_set_element
text_set_element (__libc_subinit, store_args_and_env);
# endif /* text_set_element */
# define SWAP_FLAGS(ch1, ch2) \
if (nonoption_flags_len > 0) \
{ \
char __tmp = __getopt_nonoption_flags[ch1]; \
__getopt_nonoption_flags[ch1] = __getopt_nonoption_flags[ch2]; \
__getopt_nonoption_flags[ch2] = __tmp; \
# else
# define SWAP_FLAGS(ch1, ch2)
# endif
#else /* !_LIBC */
# define SWAP_FLAGS(ch1, ch2)
#endif /* _LIBC */
/* Exchange two adjacent subsequences of ARGV.
One subsequence is elements [first_nonopt,last_nonopt)
which contains all the non-options that have been skipped so far.
The other is elements [last_nonopt,optind), which contains all
the options processed since those non-options were skipped.
`first_nonopt' and `last_nonopt' are relocated so that they describe
the new indices of the non-options in ARGV after they are moved. */
#if defined __STDC__ && __STDC__
static void exchange (char **);
static void
exchange (argv)
char **argv;
int bottom = first_nonopt;
int middle = last_nonopt;
int top = optind;
char *tem;
/* Exchange the shorter segment with the far end of the longer segment.
That puts the shorter segment into the right place.
It leaves the longer segment in the right place overall,
but it consists of two parts that need to be swapped next. */
#if defined _LIBC && defined USE_NONOPTION_FLAGS
/* First make sure the handling of the `__getopt_nonoption_flags'
string can work normally. Our top argument must be in the range
of the string. */
if (nonoption_flags_len > 0 && top >= nonoption_flags_max_len)
/* We must extend the array. The user plays games with us and
presents new arguments. */
char *new_str = malloc (top + 1);
if (new_str == NULL)
nonoption_flags_len = nonoption_flags_max_len = 0;
memset (__mempcpy (new_str, __getopt_nonoption_flags,
'\0', top + 1 - nonoption_flags_max_len);
nonoption_flags_max_len = top + 1;
__getopt_nonoption_flags = new_str;
while (top > middle && middle > bottom)
if (top - middle > middle - bottom)
/* Bottom segment is the short one. */
int len = middle - bottom;
register int i;
/* Swap it with the top part of the top segment. */
for (i = 0; i < len; i++)
tem = argv[bottom + i];
argv[bottom + i] = argv[top - (middle - bottom) + i];
argv[top - (middle - bottom) + i] = tem;
SWAP_FLAGS (bottom + i, top - (middle - bottom) + i);
/* Exclude the moved bottom segment from further swapping. */
top -= len;
/* Top segment is the short one. */
int len = top - middle;
register int i;
/* Swap it with the bottom part of the bottom segment. */
for (i = 0; i < len; i++)
tem = argv[bottom + i];
argv[bottom + i] = argv[middle + i];
argv[middle + i] = tem;
SWAP_FLAGS (bottom + i, middle + i);
/* Exclude the moved top segment from further swapping. */
bottom += len;
/* Update records for the slots the non-options now occupy. */
first_nonopt += (optind - last_nonopt);
last_nonopt = optind;
/* Initialize the internal data when the first call is made. */
#if defined __STDC__ && __STDC__
static const char *_getopt_initialize (int, char *const *, const char *);
static const char *
_getopt_initialize (argc, argv, optstring)
int argc;
char *const *argv;
const char *optstring;
/* Start processing options with ARGV-element 1 (since ARGV-element 0
is the program name); the sequence of previously skipped
non-option ARGV-elements is empty. */
first_nonopt = last_nonopt = optind;
nextchar = NULL;
posixly_correct = getenv ("POSIXLY_CORRECT");
/* Determine how to handle the ordering of options and nonoptions. */
if (optstring[0] == '-')
ordering = RETURN_IN_ORDER;
else if (optstring[0] == '+')
ordering = REQUIRE_ORDER;
else if (posixly_correct != NULL)
ordering = REQUIRE_ORDER;
ordering = PERMUTE;
#if defined _LIBC && defined USE_NONOPTION_FLAGS
if (posixly_correct == NULL
&& argc == original_argc && argv == original_argv)
if (nonoption_flags_max_len == 0)
if (__getopt_nonoption_flags == NULL
|| __getopt_nonoption_flags[0] == '\0')
nonoption_flags_max_len = -1;
const char *orig_str = __getopt_nonoption_flags;
int len = nonoption_flags_max_len = strlen (orig_str);
if (nonoption_flags_max_len < argc)
nonoption_flags_max_len = argc;
__getopt_nonoption_flags =
(char *) malloc (nonoption_flags_max_len);
if (__getopt_nonoption_flags == NULL)
nonoption_flags_max_len = -1;
memset (__mempcpy (__getopt_nonoption_flags, orig_str, len),
'\0', nonoption_flags_max_len - len);
nonoption_flags_len = nonoption_flags_max_len;
nonoption_flags_len = 0;
return optstring;
/* Scan elements of ARGV (whose length is ARGC) for option characters
given in OPTSTRING.
If an element of ARGV starts with '-', and is not exactly "-" or "--",
then it is an option element. The characters of this element
(aside from the initial '-') are option characters. If `getopt'
is called repeatedly, it returns successively each of the option characters
from each of the option elements.
If `getopt' finds another option character, it returns that character,
updating `optind' and `nextchar' so that the next call to `getopt' can
resume the scan with the following option character or ARGV-element.
If there are no more option characters, `getopt' returns -1.
Then `optind' is the index in ARGV of the first ARGV-element
that is not an option. (The ARGV-elements have been permuted
so that those that are not options now come last.)
OPTSTRING is a string containing the legitimate option characters.
If an option character is seen that is not listed in OPTSTRING,
return '?' after printing an error message. If you set `opterr' to
zero, the error message is suppressed but we still return '?'.
If a char in OPTSTRING is followed by a colon, that means it wants an arg,
so the following text in the same ARGV-element, or the text of the following
ARGV-element, is returned in `optarg'. Two colons mean an option that
wants an optional arg; if there is text in the current ARGV-element,
it is returned in `optarg', otherwise `optarg' is set to zero.
If OPTSTRING starts with `-' or `+', it requests different methods of
handling the non-option ARGV-elements.
See the comments about RETURN_IN_ORDER and REQUIRE_ORDER, above.
Long-named options begin with `--' instead of `-'.
Their names may be abbreviated as long as the abbreviation is unique
or is an exact match for some defined option. If they have an
argument, it follows the option name in the same ARGV-element, separated
from the option name by a `=', or else the in next ARGV-element.
When `getopt' finds a long-named option, it returns 0 if that option's
`flag' field is nonzero, the value of the option's `val' field
if the `flag' field is zero.
The elements of ARGV aren't really const, because we permute them.
But we pretend they're const in the prototype to be compatible
with other systems.
LONGOPTS is a vector of `struct option' terminated by an
element containing a name which is zero.
LONGIND returns the index in LONGOPT of the long-named option found.
It is only valid when a long-named option has been found by the most
recent call.
If LONG_ONLY is nonzero, '-' as well as '--' can introduce
long-named options. */
_getopt_internal (argc, argv, optstring, longopts, longind, long_only)
int argc;
char *const *argv;
const char *optstring;
const struct option *longopts;
int *longind;
int long_only;
int print_errors = opterr;
if (optstring[0] == ':')
print_errors = 0;
if (argc < 1)
return -1;
optarg = NULL;
if (optind == 0 || !__getopt_initialized)
if (optind == 0)
optind = 1; /* Don't scan ARGV[0], the program name. */
optstring = _getopt_initialize (argc, argv, optstring);
__getopt_initialized = 1;
/* Test whether ARGV[optind] points to a non-option argument.
Either it does not have option syntax, or there is an environment flag
from the shell indicating it is not an option. The later information
is only used when the used in the GNU libc. */
#if defined _LIBC && defined USE_NONOPTION_FLAGS
# define NONOPTION_P (argv[optind][0] != '-' || argv[optind][1] == '\0' \
|| (optind < nonoption_flags_len \
&& __getopt_nonoption_flags[optind] == '1'))
# define NONOPTION_P (argv[optind][0] != '-' || argv[optind][1] == '\0')
if (nextchar == NULL || *nextchar == '\0')
/* Advance to the next ARGV-element. */
/* Give FIRST_NONOPT & LAST_NONOPT rational values if OPTIND has been
moved back by the user (who may also have changed the arguments). */
if (last_nonopt > optind)
last_nonopt = optind;
if (first_nonopt > optind)
first_nonopt = optind;
if (ordering == PERMUTE)
/* If we have just processed some options following some non-options,
exchange them so that the options come first. */
if (first_nonopt != last_nonopt && last_nonopt != optind)
exchange ((char **) argv);
else if (last_nonopt != optind)
first_nonopt = optind;
/* Skip any additional non-options
and extend the range of non-options previously skipped. */
while (optind < argc && NONOPTION_P)
last_nonopt = optind;
/* The special ARGV-element `--' means premature end of options.
Skip it like a null option,
then exchange with previous non-options as if it were an option,
then skip everything else like a non-option. */
if (optind != argc && !strcmp (argv[optind], "--"))
if (first_nonopt != last_nonopt && last_nonopt != optind)
exchange ((char **) argv);
else if (first_nonopt == last_nonopt)
first_nonopt = optind;
last_nonopt = argc;
optind = argc;
/* If we have done all the ARGV-elements, stop the scan
and back over any non-options that we skipped and permuted. */
if (optind == argc)
/* Set the next-arg-index to point at the non-options
that we previously skipped, so the caller will digest them. */
if (first_nonopt != last_nonopt)
optind = first_nonopt;
return -1;
/* If we have come to a non-option and did not permute it,
either stop the scan or describe it to the caller and pass it by. */
if (ordering == REQUIRE_ORDER)
return -1;
optarg = argv[optind++];
return 1;
/* We have found another option-ARGV-element.
Skip the initial punctuation. */
nextchar = (argv[optind] + 1
+ (longopts != NULL && argv[optind][1] == '-'));
/* Decode the current option-ARGV-element. */
/* Check whether the ARGV-element is a long option.
If long_only and the ARGV-element has the form "-f", where f is
a valid short option, don't consider it an abbreviated form of
a long option that starts with f. Otherwise there would be no
way to give the -f short option.
On the other hand, if there's a long option "fubar" and
the ARGV-element is "-fu", do consider that an abbreviation of
the long option, just like "--fu", and not "-f" with arg "u".
This distinction seems to be the most useful approach. */
if (longopts != NULL
&& (argv[optind][1] == '-' </