diff --git a/misc/ecc-formulas.tex b/misc/ecc-formulas.tex index 36c152271d63ff4f71093a234fe660434b102adf..462250661f767ba0b1ac5921b21d7a949dee9a44 100644 --- a/misc/ecc-formulas.tex +++ b/misc/ecc-formulas.tex @@ -127,7 +127,7 @@ mapping $P = (x,y)$ to $P' = (u, v)$, as follows. that $x^2 + bx + 1 = 0$, or $(x + b/2)^2 = (b/2)^2 - 1$, which also isn't a quadratic residue). The correspondence is then given by \begin{align*} - u &= \sqrt{b} \, x / y \\ + u &= \sqrt{b+2} \, x / y \\ v &= (x-1) / (x+1) \end{align*} \end{itemize} @@ -135,7 +135,7 @@ mapping $P = (x,y)$ to $P' = (u, v)$, as follows. The inverse transformation is \begin{align*} x &= (1+v) / (1-v) \\ - y &= \sqrt{b} x / u + y &= \sqrt{b+2} x / u \end{align*} If the Edwards coordinates are represented using homogeneous coordinates, $u = U/W$ and $v = V/W$, then