Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
/* bignum-next-prime.c
*
*/
/* nettle, low-level cryptographics library
*
* Copyright (C) 2002 Niels Mller
*
* The nettle library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* The nettle library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the nettle library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*/
#if HAVE_CONFIG_H
# include "config.h"
#endif
#include <limits.h>
#include "bignum.h"
#include "nettle-internal.h"
/* From gmp.h */
/* Test for gcc >= maj.min, as per __GNUC_PREREQ in glibc */
#if defined (__GNUC__) && defined (__GNUC_MINOR__)
#define GNUC_PREREQ(maj, min) \
((__GNUC__ << 16) + __GNUC_MINOR__ >= ((maj) << 16) + (min))
#else
#define GNUC_PREREQ(maj, min) 0
#endif
#if GNUC_PREREQ (3,0)
# define UNLIKELY(cond) __builtin_expect ((cond) != 0, 0)
#else
# define UNLIKELY(cond) cond
#endif
/* From some benchmarking using the examples nextprime(200!) and
nextprime(240!), it seems that it pays off to use a prime list up
to around 5000--10000 primes. There are 6541 odd primes less than
2^16. */
static const uint16_t primes[] = {
/* Generated by
./examples/eratosthenes 65535 \
| awk '{ if (NR % 10 == 2) printf ("\n"); if (NR > 1) printf("%d, ", $1); }
END { printf("\n"); }' > prime-list.h
*/
#include "prime-list.h"
};
#define NUMBER_OF_PRIMES (sizeof(primes) / sizeof(primes[0]))
#ifdef mpz_millerrabin
# define PRIME_P mpz_millerrabin
#else
# define PRIME_P mpz_probab_prime_p
#endif
/* NOTE: The mpz_nextprime in current GMP is unoptimized. */
void
nettle_next_prime(mpz_t p, mpz_t n, unsigned count, unsigned prime_limit,
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
void *progress_ctx, nettle_progress_func progress)
{
mpz_t tmp;
TMP_DECL(moduli, unsigned, NUMBER_OF_PRIMES);
unsigned difference;
if (prime_limit > NUMBER_OF_PRIMES)
prime_limit = NUMBER_OF_PRIMES;
/* First handle tiny numbers */
if (mpz_cmp_ui(n, 2) <= 0)
{
mpz_set_ui(p, 2);
return;
}
mpz_set(p, n);
mpz_setbit(p, 0);
if (mpz_cmp_ui(p, 8) < 0)
return;
mpz_init(tmp);
if (mpz_cmp_ui(p, primes[prime_limit-1]) <= 0)
/* Use only 3, 5 and 7 */
/* FIXME: Could do binary search in the table. */
prime_limit = 3;
/* Compute residues modulo small odd primes */
/* FIXME: Could be sped up by collecting limb-sized products of the
primes, to reduce the calls to mpz_fdiv_ui */
TMP_ALLOC(moduli, prime_limit);
{
unsigned i;
for (i = 0; i < prime_limit; i++)
moduli[i] = mpz_fdiv_ui(p, primes[i]);
}
for (difference = 0; ; difference += 2)
{
int composite = 0;
unsigned i;
if (difference >= UINT_MAX - 10)
{ /* Should not happen, at least not very often... */
mpz_add_ui(p, p, difference);
difference = 0;
}
/* First check residues */
for (i = 0; i < prime_limit; i++)
{
if (moduli[i] == 0)
composite = 1;
if (UNLIKELY(moduli[i] >= primes[i]))
moduli[i] -= primes[i];
}
if (composite)
continue;
mpz_add_ui(p, p, difference);
difference = 0;
if (progress)
progress(progress_ctx, '.');
/* Miller-Rabin test */
if (PRIME_P(p, count))
if (progress)
progress(progress_ctx, '*');
}
mpz_clear(tmp);
}