Newer
Older
*
* The sha1 hash function.
*/
/* nettle, low-level cryptographics library
*
* Copyright (C) 2001 Peter Gutmann, Andrew Kuchling, Niels Mller
*
* The nettle library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* The nettle library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the nettle library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*/
/* Here's the first paragraph of Peter Gutmann's posting,
* <30ajo5$oe8@ccu2.auckland.ac.nz>:
*
* The following is my SHA (FIPS 180) code updated to allow use of the "fixed"
* SHA, thanks to Jim Gillogly and an anonymous contributor for the information on
* what's changed in the new version. The fix is a simple change which involves
* adding a single rotate in the initial expansion function. It is unknown
* whether this is an optimal solution to the problem which was discovered in the
* SHA or whether it's simply a bandaid which fixes the problem with a minimum of
* effort (for example the reengineering of a great many Capstone chips).
*/
#if HAVE_CONFIG_H
# include "config.h"
#endif
#include "sha.h"
#include "macros.h"
/* A block, treated as a sequence of 32-bit words. */
#define SHA1_DATA_LENGTH 16
/* SHA initial values */
#define h0init 0x67452301L
#define h1init 0xEFCDAB89L
#define h2init 0x98BADCFEL
#define h3init 0x10325476L
#define h4init 0xC3D2E1F0L
/* Initialize the SHA values */
void
sha1_init(struct sha1_ctx *ctx)
{
/* Set the h-vars to their initial values */
ctx->digest[ 0 ] = h0init;
ctx->digest[ 1 ] = h1init;
ctx->digest[ 2 ] = h2init;
ctx->digest[ 3 ] = h3init;
ctx->digest[ 4 ] = h4init;
/* Initialize bit count */
ctx->count_low = ctx->count_high = 0;
/* Initialize buffer */
ctx->index = 0;
}
/* Compression function, written in assembler on some systems.
Note that it destroys the data array. */
#define sha1_compress _nettle_sha1_compress
static void
sha1_block(struct sha1_ctx *ctx, const uint8_t *block)
{
uint32_t data[SHA1_DATA_LENGTH];
int i;
/* Update block count */
if (!++ctx->count_low)
++ctx->count_high;
/* Endian independent conversion */
for (i = 0; i<SHA1_DATA_LENGTH; i++, block += 4)
data[i] = READ_UINT32(block);
sha1_compress(ctx->digest, data);
}
void
sha1_update(struct sha1_ctx *ctx,
unsigned length, const uint8_t *buffer)
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
{
if (ctx->index)
{ /* Try to fill partial block */
unsigned left = SHA1_DATA_SIZE - ctx->index;
if (length < left)
{
memcpy(ctx->block + ctx->index, buffer, length);
ctx->index += length;
return; /* Finished */
}
else
{
memcpy(ctx->block + ctx->index, buffer, left);
sha1_block(ctx, ctx->block);
buffer += left;
length -= left;
}
}
while (length >= SHA1_DATA_SIZE)
{
sha1_block(ctx, buffer);
buffer += SHA1_DATA_SIZE;
length -= SHA1_DATA_SIZE;
}
if ((ctx->index = length)) /* This assignment is intended */
/* Buffer leftovers */
memcpy(ctx->block, buffer, length);
}
/* Final wrapup - pad to SHA1_DATA_SIZE-byte boundary with the bit pattern
1 0* (64-bit count of bits processed, MSB-first) */
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
sha1_final(struct sha1_ctx *ctx)
{
uint32_t data[SHA1_DATA_LENGTH];
int i;
int words;
i = ctx->index;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
assert(i < SHA1_DATA_SIZE);
ctx->block[i++] = 0x80;
/* Fill rest of word */
for( ; i & 3; i++)
ctx->block[i] = 0;
/* i is now a multiple of the word size 4 */
words = i >> 2;
for (i = 0; i < words; i++)
data[i] = READ_UINT32(ctx->block + 4*i);
if (words > (SHA1_DATA_LENGTH-2))
{ /* No room for length in this block. Process it and
* pad with another one */
for (i = words ; i < SHA1_DATA_LENGTH; i++)
data[i] = 0;
sha1_compress(ctx->digest, data);
for (i = 0; i < (SHA1_DATA_LENGTH-2); i++)
data[i] = 0;
}
else
for (i = words ; i < SHA1_DATA_LENGTH - 2; i++)
data[i] = 0;
/* There are 512 = 2^9 bits in one block */
data[SHA1_DATA_LENGTH-2] = (ctx->count_high << 9) | (ctx->count_low >> 23);
data[SHA1_DATA_LENGTH-1] = (ctx->count_low << 9) | (ctx->index << 3);
sha1_compress(ctx->digest, data);
sha1_digest(struct sha1_ctx *ctx,
unsigned length,
uint8_t *digest)
{
unsigned i;
unsigned words;
unsigned leftover;
assert(length <= SHA1_DIGEST_SIZE);
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
words = length / 4;
leftover = length % 4;
for (i = 0; i < words; i++, digest += 4)
WRITE_UINT32(digest, ctx->digest[i]);
if (leftover)
{
uint32_t word;
unsigned j = leftover;
assert(i < _SHA1_DIGEST_LENGTH);
word = ctx->digest[i];
switch (leftover)
{
default:
abort();
case 3:
digest[--j] = (word >> 8) & 0xff;
/* Fall through */
case 2:
digest[--j] = (word >> 16) & 0xff;
/* Fall through */
case 1:
digest[--j] = (word >> 24) & 0xff;
}
}