Skip to content
Snippets Groups Projects
twofish.c 15.9 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * The twofish block cipher.
    
    /* twofish - An implementation of the twofish cipher.
    
    Ruud de Rooij's avatar
    Ruud de Rooij committed
     * Copyright (C) 1999 Ruud de Rooij <ruud@debian.org>
     *
     * Modifications for lsh, integrated testing
     * Copyright (C) 1999 J.H.M. Dassen (Ray) <jdassen@wi.LeidenUniv.nl>
     *
    
     * Integrated with the nettle library,
     * Copyright (C) 2001 Niels Mller
    
    /* nettle, low-level cryptographics library
     *
     * The nettle library is free software; you can redistribute it and/or modify
     * it under the terms of the GNU Lesser General Public License as published by
     * the Free Software Foundation; either version 2.1 of the License, or (at your
     * option) any later version.
     * 
    
    Niels Möller's avatar
    Niels Möller committed
     * The nettle Library is distributed in the hope that it will be useful, but
    
     * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
     * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
     * License for more details.
     * 
     * You should have received a copy of the GNU Lesser General Public License
    
    Niels Möller's avatar
    Niels Möller committed
     * along with the nettle library; see the file COPYING.LIB.  If not, write to
    
     * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
     * MA 02111-1307, USA.
    
    #if HAVE_CONFIG_H
    # include "config.h"
    #endif
    
    Niels Möller's avatar
    Niels Möller committed
    #include <string.h>
    
    Ruud de Rooij's avatar
    Ruud de Rooij committed
    /* Bitwise rotations on 32-bit words.  These are defined as macros that
     * evaluate their argument twice, so do not apply to any expressions with
     * side effects.
     */
    
    #define rol1(x) (((x) << 1) | (((x) & 0x80000000) >> 31))
    #define rol8(x) (((x) << 8) | (((x) & 0xFF000000) >> 24))
    #define rol9(x) (((x) << 9) | (((x) & 0xFF800000) >> 23))
    #define ror1(x) (((x) >> 1) | (((x) & 0x00000001) << 31))
    
    /* ------------------------------------------------------------------------- */
    
    /* The permutations q0 and q1.  These are fixed permutations on 8-bit values.
     * The permutations have been computed using the program generate_q
     * which is distributed along with this file.
     */
    
    
    static const uint8_t q0[] = { 0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76,
    
    Ruud de Rooij's avatar
    Ruud de Rooij committed
                         0x9A, 0x92, 0x80, 0x78, 0xE4, 0xDD, 0xD1, 0x38,
                         0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C,
                         0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48,
                         0xF2, 0xD0, 0x8B, 0x30, 0x84, 0x54, 0xDF, 0x23,
                         0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
                         0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C,
                         0xA6, 0xEB, 0xA5, 0xBE, 0x16, 0x0C, 0xE3, 0x61,
                         0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B,
                         0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1,
                         0xE1, 0xE6, 0xBD, 0x45, 0xE2, 0xF4, 0xB6, 0x66,
                         0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
                         0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA,
                         0xEA, 0x77, 0x39, 0xAF, 0x33, 0xC9, 0x62, 0x71,
                         0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8,
                         0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7,
                         0xA1, 0x1D, 0xAA, 0xED, 0x06, 0x70, 0xB2, 0xD2,
                         0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
                         0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB,
                         0x9E, 0x9C, 0x52, 0x1B, 0x5F, 0x93, 0x0A, 0xEF,
                         0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B,
                         0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64,
                         0x2A, 0xCE, 0xCB, 0x2F, 0xFC, 0x97, 0x05, 0x7A,
                         0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
                         0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02,
                         0xB8, 0xDA, 0xB0, 0x17, 0x55, 0x1F, 0x8A, 0x7D,
                         0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72,
                         0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34,
                         0x6E, 0x50, 0xDE, 0x68, 0x65, 0xBC, 0xDB, 0xF8,
                         0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
                         0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00,
                         0x6F, 0x9D, 0x36, 0x42, 0x4A, 0x5E, 0xC1, 0xE0, };
    
    
    static const uint8_t q1[] = { 0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8,
    
    Ruud de Rooij's avatar
    Ruud de Rooij committed
                         0x4A, 0xD3, 0xE6, 0x6B, 0x45, 0x7D, 0xE8, 0x4B,
                         0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1,
                         0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F,
                         0x5E, 0xBA, 0xAE, 0x5B, 0x8A, 0x00, 0xBC, 0x9D,
                         0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
                         0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3,
                         0xB2, 0x73, 0x4C, 0x54, 0x92, 0x74, 0x36, 0x51,
                         0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96,
                         0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C,
                         0x13, 0x95, 0x9C, 0xC7, 0x24, 0x46, 0x3B, 0x70,
                         0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
                         0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC,
                         0x03, 0x6F, 0x08, 0xBF, 0x40, 0xE7, 0x2B, 0xE2,
                         0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9,
                         0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17,
                         0x66, 0x94, 0xA1, 0x1D, 0x3D, 0xF0, 0xDE, 0xB3,
                         0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
                         0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49,
                         0x81, 0x88, 0xEE, 0x21, 0xC4, 0x1A, 0xEB, 0xD9,
                         0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01,
                         0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48,
                         0x4F, 0xF2, 0x65, 0x8E, 0x78, 0x5C, 0x58, 0x19,
                         0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
                         0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5,
                         0xCE, 0xE9, 0x68, 0x44, 0xE0, 0x4D, 0x43, 0x69,
                         0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E,
                         0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC,
                         0x22, 0xC9, 0xC0, 0x9B, 0x89, 0xD4, 0xED, 0xAB,
                         0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
                         0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2,
                         0x16, 0x25, 0x86, 0x56, 0x55, 0x09, 0xBE, 0x91, };
    
    /* ------------------------------------------------------------------------- */
    
    
    /* uint8_t gf_multiply(uint8_t p, uint8_t a, uint8_t b)
    
    Ruud de Rooij's avatar
    Ruud de Rooij committed
     *
     * Multiplication in GF(2^8).
     *
     * This function multiplies a times b in the Galois Field GF(2^8) with
     * primitive polynomial p.
     * The representation of the polynomials a, b, and p uses bits with
     * values 2^i to represent the terms x^i.  The polynomial p contains an
     * implicit term x^8.
     *
     * Note that addition and subtraction in GF(2^8) is simply the XOR
     * operation.
     */
    
    
    static uint8_t
    gf_multiply(uint8_t p, uint8_t a, uint8_t b)
    
      uint32_t shift  = b;
      uint8_t result = 0;
    
      while (a)
        {
          if (a & 1) result ^= shift;
          a = a >> 1;
          shift = shift << 1;
          if (shift & 0x100) shift ^= p;
    
    Ruud de Rooij's avatar
    Ruud de Rooij committed
    }
    
    /* ------------------------------------------------------------------------- */
    
    /* The matrix RS as specified in section 4.3 the twofish paper. */
    
    
    static const uint8_t rs_matrix[4][8] = {
    
    Ruud de Rooij's avatar
    Ruud de Rooij committed
        { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E },
        { 0xA4, 0x56, 0x82, 0xF3, 0x1E, 0xC6, 0x68, 0xE5 },
        { 0x02, 0xA1, 0xFC, 0xC1, 0x47, 0xAE, 0x3D, 0x19 },
        { 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E, 0x03 } };
    
    
    /* uint32_t compute_s(uint32_t m1, uint32_t m2);
    
    Ruud de Rooij's avatar
    Ruud de Rooij committed
     *
     * Computes the value RS * M, where M is a byte vector composed of the
     * bytes of m1 and m2.  Arithmetic is done in GF(2^8) with primitive
     * polynomial x^8 + x^6 + x^3 + x^2 + 1.
     *
     * This function is used to compute the sub-keys S which are in turn used
     * to generate the S-boxes.
     */
    
    
    static uint32_t
    compute_s(uint32_t m1, uint32_t m2)
    
      int i;
      for (i = 0; i < 4; i++)
        s |=  ((  gf_multiply(0x4D, m1,       rs_matrix[i][0])
    	    ^ gf_multiply(0x4D, m1 >> 8,  rs_matrix[i][1])
    	    ^ gf_multiply(0x4D, m1 >> 16, rs_matrix[i][2])
    	    ^ gf_multiply(0x4D, m1 >> 24, rs_matrix[i][3])
    	    ^ gf_multiply(0x4D, m2,       rs_matrix[i][4])
    	    ^ gf_multiply(0x4D, m2 >> 8,  rs_matrix[i][5])
    	    ^ gf_multiply(0x4D, m2 >> 16, rs_matrix[i][6])
    	    ^ gf_multiply(0x4D, m2 >> 24, rs_matrix[i][7])) << (i*8));
      return s;
    
    Ruud de Rooij's avatar
    Ruud de Rooij committed
    }
    
    /* ------------------------------------------------------------------------- */
    
    /* This table describes which q S-boxes are used for each byte in each stage
     * of the function h, cf. figure 2 of the twofish paper.
     */
    
    
    static const uint8_t * q_table[4][5] = { { q1, q1, q0, q0, q1 },
    
    Ruud de Rooij's avatar
    Ruud de Rooij committed
                                    { q0, q1, q1, q0, q0 },
                                    { q0, q0, q0, q1, q1 },
                                    { q1, q0, q1, q1, q0 } };
    
    /* The matrix MDS as specified in section 4.3.2 of the twofish paper. */
    
    
    static const uint8_t mds_matrix[4][4] = { { 0x01, 0xEF, 0x5B, 0x5B },
    
    				 { 0x5B, 0xEF, 0xEF, 0x01 },
    				 { 0xEF, 0x5B, 0x01, 0xEF },
    				 { 0xEF, 0x01, 0xEF, 0x5B } };
    
    /* uint32_t h_uint8_t(int k, int i, uint8_t x, uint8_t l0, uint8_t l1, uint8_t l2, uint8_t l3);
    
    Ruud de Rooij's avatar
    Ruud de Rooij committed
     *
     * Perform the h function (section 4.3.2) on one byte.  It consists of
     * repeated applications of the q permutation, followed by a XOR with
     * part of a sub-key.  Finally, the value is multiplied by one column of
     * the MDS matrix.  To obtain the result for a full word, the results of
     * h for the individual bytes are XORed.
     *
     * k is the key size (/ 64 bits), i is the byte number (0 = LSB), x is the
     * actual byte to apply the function to; l0, l1, l2, and l3 are the
    
     * appropriate bytes from the subkey.  Note that only l0..l(k-1) are used.
    
    static uint32_t
    h_byte(int k, int i, uint8_t x, uint8_t l0, uint8_t l1, uint8_t l2, uint8_t l3)
    
      uint8_t y = q_table[i][4][l0 ^
    
                q_table[i][3][l1 ^
                  q_table[i][2][k == 2 ? x : l2 ^
                    q_table[i][1][k == 3 ? x : l3 ^ q_table[i][0][x]]]]];
    
    
      return ( ((uint32_t)gf_multiply(0x69, mds_matrix[0][i], y))
    	   | ((uint32_t)gf_multiply(0x69, mds_matrix[1][i], y) << 8)
    	   | ((uint32_t)gf_multiply(0x69, mds_matrix[2][i], y) << 16)
    	   | ((uint32_t)gf_multiply(0x69, mds_matrix[3][i], y) << 24) );
    
    /* uint32_t h(int k, uint8_t x, uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3);
    
    Ruud de Rooij's avatar
    Ruud de Rooij committed
     *
     * Perform the function h on a word.  See the description of h_byte() above.
     */
    
    
    static uint32_t
    h(int k, uint8_t x, uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3)
    
      return (  h_byte(k, 0, x, l0,       l1,       l2,       l3)
    	  ^ h_byte(k, 1, x, l0 >> 8,  l1 >> 8,  l2 >> 8,  l3 >> 8)
    	  ^ h_byte(k, 2, x, l0 >> 16, l1 >> 16, l2 >> 16, l3 >> 16)
    	  ^ h_byte(k, 3, x, l0 >> 24, l1 >> 24, l2 >> 24, l3 >> 24) );
    
    Ruud de Rooij's avatar
    Ruud de Rooij committed
    }
    
    
    /* ------------------------------------------------------------------------- */
    
    /* API */
    
    /* Structure which contains the tables containing the subkeys and the
     * key-dependent s-boxes.
     */
    
    
    
    /* Set up internal tables required for twofish encryption and decryption.
    
    Ruud de Rooij's avatar
    Ruud de Rooij committed
     *
     * The key size is specified in bytes.  Key sizes up to 32 bytes are
    
     * supported.  Larger key sizes are silently truncated.  
    
    twofish_set_key(struct twofish_ctx *context,
    		unsigned keysize, const uint8_t *key)
    
      uint8_t key_copy[32];
      uint32_t m[8], s[4], t;
    
      /* Extend key as necessary */
    
      /* We do a little more copying than necessary, but that doesn't
       * really matter. */
    
      memset(key_copy, 0, 32);
      memcpy(key_copy, key, keysize);
    
    
      for (i = 0; i<8; i++)
        m[i] = LE_READ_UINT32(key_copy + i*4);
      
    
      if (keysize <= 16)
        k = 2;
      else if (keysize <= 24)
        k = 3;
      else
        k = 4;
    
      /* Compute sub-keys */
    
      for (i = 0; i < 20; i++)
        {
          t = h(k, 2*i+1, m[1], m[3], m[5], m[7]);
          t = rol8(t);
          t += (context->keys[2*i] =
    	    t + h(k, 2*i, m[0], m[2], m[4], m[6]));
          t = rol9(t);
          context->keys[2*i+1] = t;
    
      /* Compute key-dependent S-boxes */
    
      for (i = 0; i < k; i++)
        s[k-1-i] = compute_s(m[2*i], m[2*i+1]);
    
      for (i = 0; i < 4; i++)
        for (j = 0; j < 256; j++)
          context->s_box[i][j] = h_byte(k, i, j,
    				    s[0] >> (i*8),
    				    s[1] >> (i*8),
    				    s[2] >> (i*8),
    				    s[3] >> (i*8));
    
    /* Encrypt blocks of 16 bytes of data with the twofish algorithm.
    
     * Before this function can be used, twofish_set_key() must be used in order to
    
    Ruud de Rooij's avatar
    Ruud de Rooij committed
     * set up various tables required for the encryption algorithm.
    
    Ruud de Rooij's avatar
    Ruud de Rooij committed
     * This function always encrypts 16 bytes of plaintext to 16 bytes of
     * ciphertext.  The memory areas of the plaintext and the ciphertext can
     * overlap.
     */
    
    void
    
    twofish_encrypt(struct twofish_ctx *context,
    		unsigned length,
    		uint8_t *ciphertext,
    		const uint8_t *plaintext)
    
      uint32_t * keys        = context->keys;
      uint32_t (*s_box)[256] = context->s_box;
    
      assert( !(length % TWOFISH_BLOCK_SIZE) );
    
      for ( ; length; length -= TWOFISH_BLOCK_SIZE)
    
        {  
          uint32_t words[4];
          uint32_t r0, r1, r2, r3, t0, t1;
          int i;
    
          for (i = 0; i<4; i++, plaintext += 4)
    	words[i] = LE_READ_UINT32(plaintext);
    
          r0 = words[0] ^ keys[0];
          r1 = words[1] ^ keys[1];
          r2 = words[2] ^ keys[2];
          r3 = words[3] ^ keys[3];
      
          for (i = 0; i < 8; i++) {
    	t1 = (  s_box[1][r1 & 0xFF]
    		^ s_box[2][(r1 >> 8) & 0xFF]
    		^ s_box[3][(r1 >> 16) & 0xFF]
    		^ s_box[0][(r1 >> 24) & 0xFF]);
    	t0 = (  s_box[0][r0 & 0xFF]
    		^ s_box[1][(r0 >> 8) & 0xFF]
    		^ s_box[2][(r0 >> 16) & 0xFF]
    		^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
    	r3 = (t1 + t0 + keys[4*i+9]) ^ rol1(r3);
    	r2 = (t0 + keys[4*i+8]) ^ r2;
    	r2 = ror1(r2);
    
    	t1 = (  s_box[1][r3 & 0xFF]
    		^ s_box[2][(r3 >> 8) & 0xFF]
    		^ s_box[3][(r3 >> 16) & 0xFF]
    		^ s_box[0][(r3 >> 24) & 0xFF]);
    	t0 = (  s_box[0][r2 & 0xFF]
    		^ s_box[1][(r2 >> 8) & 0xFF]
    		^ s_box[2][(r2 >> 16) & 0xFF]
    		^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
    	r1 = (t1 + t0 + keys[4*i+11]) ^ rol1(r1);
    	r0 = (t0 + keys[4*i+10]) ^ r0;
    	r0 = ror1(r0);
          }
    
          words[0] = r2 ^ keys[4];
          words[1] = r3 ^ keys[5];
          words[2] = r0 ^ keys[6];
          words[3] = r1 ^ keys[7];
    
          for (i = 0; i<4; i++, ciphertext += 4)
    	LE_WRITE_UINT32(ciphertext, words[i]);
        }
    
    /* Decrypt blocks of 16 bytes of data with the twofish algorithm.
    
     * Before this function can be used, twofish_set_key() must be used in order to
    
    Ruud de Rooij's avatar
    Ruud de Rooij committed
     * set up various tables required for the decryption algorithm.
    
    Ruud de Rooij's avatar
    Ruud de Rooij committed
     * This function always decrypts 16 bytes of ciphertext to 16 bytes of
     * plaintext.  The memory areas of the plaintext and the ciphertext can
     * overlap.
     */
    
    void
    
    twofish_decrypt(struct twofish_ctx *context,
    		unsigned length,
    		uint8_t *plaintext,
    		const uint8_t *ciphertext)
    
    
      uint32_t *keys  = context->keys;
      uint32_t (*s_box)[256] = context->s_box;
    
      assert( !(length % TWOFISH_BLOCK_SIZE) );
    
      for ( ; length; length -= TWOFISH_BLOCK_SIZE)
    
        {  
          uint32_t words[4];
          uint32_t r0, r1, r2, r3, t0, t1;
          int i;
    
          for (i = 0; i<4; i++, ciphertext += 4)
    	words[i] = LE_READ_UINT32(ciphertext);
    
          r0 = words[2] ^ keys[6];
          r1 = words[3] ^ keys[7];
          r2 = words[0] ^ keys[4];
          r3 = words[1] ^ keys[5];
    
          for (i = 0; i < 8; i++) {
    	t1 = (  s_box[1][r3 & 0xFF]
    		^ s_box[2][(r3 >> 8) & 0xFF]
    		^ s_box[3][(r3 >> 16) & 0xFF]
    		^ s_box[0][(r3 >> 24) & 0xFF]);
    	t0 = (  s_box[0][r2 & 0xFF]
    		^ s_box[1][(r2 >> 8) & 0xFF]
    		^ s_box[2][(r2 >> 16) & 0xFF]
    		^ s_box[3][(r2 >> 24) & 0xFF]) + t1;
    	r1 = (t1 + t0 + keys[39-4*i]) ^ r1;
    	r1 = ror1(r1);
    	r0 = (t0 + keys[38-4*i]) ^ rol1(r0);
    
    	t1 = (  s_box[1][r1 & 0xFF]
    		^ s_box[2][(r1 >> 8) & 0xFF]
    		^ s_box[3][(r1 >> 16) & 0xFF]
    		^ s_box[0][(r1 >> 24) & 0xFF]);
    	t0 = (  s_box[0][r0 & 0xFF]
    		^ s_box[1][(r0 >> 8) & 0xFF]
    		^ s_box[2][(r0 >> 16) & 0xFF]
    		^ s_box[3][(r0 >> 24) & 0xFF]) + t1;
    	r3 = (t1 + t0 + keys[37-4*i]) ^ r3;
    	r3 = ror1(r3);
    	r2 = (t0 + keys[36-4*i]) ^ rol1(r2);
          }
    
          words[0] = r0 ^ keys[0];
          words[1] = r1 ^ keys[1];
          words[2] = r2 ^ keys[2];
          words[3] = r3 ^ keys[3];
    
          for (i = 0; i<4; i++, plaintext += 4)
    	LE_WRITE_UINT32(plaintext, words[i]);
        }