Newer
Older
/* yarrow256.c
*
* The yarrow pseudo-randomness generator.
*/
/* nettle, low-level cryptographics library
*
* Copyright (C) 2001 Niels Mller
*
* The nettle library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* The nettle library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the nettle library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*/
#if HAVE_CONFIG_H
# include "config.h"
#endif
#include "yarrow.h"
#include "macros.h"
#ifndef YARROW_DEBUG
#define YARROW_DEBUG 0
#endif
#if YARROW_DEBUG
/* Parameters */
/* An upper limit on the entropy (in bits) in one octet of sample
* data. */
#define YARROW_MULTIPLIER 4
/* Entropy threshold for reseeding from the fast pool */
#define YARROW_FAST_THRESHOLD 100
/* Entropy threshold for reseeding from the fast pool */
#define YARROW_SLOW_THRESHOLD 160
/* Number of sources that must exceed the threshold for slow reseed */
#define YARROW_SLOW_K 2
/* The number of iterations when reseeding, P_t in the yarrow paper.
* Should be chosen so that reseeding takes on the order of 0.1-1
* seconds. */
#define YARROW_RESEED_ITERATIONS 1500
/* Entropy estimates sticks to this value, it is treated as infinity
* in calculations. It should fit comfortably in an uint32_t, to avoid
* overflows. */
#define YARROW_MAX_ENTROPY 0x100000
/* Forward declarations */
static void
yarrow_fast_reseed(struct yarrow256_ctx *ctx);
static void
yarrow_gate(struct yarrow256_ctx *ctx);
void
yarrow256_init(struct yarrow256_ctx *ctx,
struct yarrow_source *s)
{
sha256_init(&ctx->pools[0]);
sha256_init(&ctx->pools[1]);
/* Not strictly, necessary, but it makes it easier to see if the
* values are sane. */
memset(ctx->seed_file, 0, YARROW256_SEED_FILE_SIZE);
memset(ctx->counter, 0, sizeof(ctx->counter));
ctx->nsources = n;
ctx->sources = s;
for (i = 0; i<n; i++)
{
ctx->sources[i].estimate[YARROW_FAST] = 0;
ctx->sources[i].estimate[YARROW_SLOW] = 0;
ctx->sources[i].next = YARROW_FAST;
}
}
void
yarrow256_seed(struct yarrow256_ctx *ctx,
unsigned length,
const uint8_t *seed_file)
{
/* FIXME: Perhaps it's better to use assert ? */
if (!length)
return;
sha256_update(&ctx->pools[YARROW_FAST], length, seed_file);
yarrow_fast_reseed(ctx);
ctx->seeded = 1;
}
/* FIXME: Generalize so that it generates a few more blocks at a
* time. */
static void
yarrow_generate_block(struct yarrow256_ctx *ctx,
uint8_t *block)
{
unsigned i;
aes_encrypt(&ctx->key, sizeof(ctx->counter), block, ctx->counter);
/* Increment counter, treating it as a big-endian number. This is
* machine independent, and follows appendix B of the NIST
* specification of cipher modes of operation.
*
* We could keep a representation of thy counter as 4 32-bit values,
* and write entire words (in big-endian byteorder) into the counter
* block, whenever they change. */
for (i = sizeof(ctx->counter); i--; )
{
if (++ctx->counter[i])
break;
}
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
static void
yarrow_iterate(uint8_t *digest)
{
uint8_t v0[SHA256_DIGEST_SIZE];
unsigned i;
memcpy(v0, digest, SHA256_DIGEST_SIZE);
/* When hashed inside the loop, i should run from 1 to
* YARROW_RESEED_ITERATIONS */
for (i = 0; ++i < YARROW_RESEED_ITERATIONS; )
{
uint8_t count[4];
struct sha256_ctx hash;
sha256_init(&hash);
/* Hash v_i | v_0 | i */
WRITE_UINT32(count, i);
sha256_update(&hash, SHA256_DIGEST_SIZE, digest);
sha256_update(&hash, sizeof(v0), v0);
sha256_update(&hash, sizeof(count), count);
sha256_digest(&hash, SHA256_DIGEST_SIZE, digest);
}
}
/* NOTE: The SHA-256 digest size equals the AES key size, so we need
* no "size adaptor". */
static void
yarrow_fast_reseed(struct yarrow256_ctx *ctx)
{
uint8_t digest[SHA256_DIGEST_SIZE];
unsigned i;
fprintf(stderr, "yarrow_fast_reseed\n");
#endif
/* We feed two block of output using the current key into the pool
* before emptying it. */
if (ctx->seeded)
{
uint8_t blocks[AES_BLOCK_SIZE * 2];
yarrow_generate_block(ctx, blocks);
yarrow_generate_block(ctx, blocks + AES_BLOCK_SIZE);
sha256_update(&ctx->pools[YARROW_FAST], sizeof(blocks), blocks);
}
sha256_digest(&ctx->pools[YARROW_FAST], sizeof(digest), digest);
/* Iterate */
yarrow_iterate(digest);
aes_set_encrypt_key(&ctx->key, sizeof(digest), digest);
/* Derive new counter value */
memset(ctx->counter, 0, sizeof(ctx->counter));
aes_encrypt(&ctx->key, sizeof(ctx->counter), ctx->counter, ctx->counter);
/* Reset estimates. */
for (i = 0; i<ctx->nsources; i++)
ctx->sources[i].estimate[YARROW_FAST] = 0;
/* New seed file. */
/* FIXME: Extract this into a function of its own. */
for (i = 0; i < sizeof(ctx->seed_file); i+= AES_BLOCK_SIZE)
yarrow_generate_block(ctx, ctx->seed_file + i);
yarrow_gate(ctx);
}
static void
yarrow_slow_reseed(struct yarrow256_ctx *ctx)
{
uint8_t digest[SHA256_DIGEST_SIZE];
unsigned i;
fprintf(stderr, "yarrow_slow_reseed\n");
#endif
/* Get digest of the slow pool*/
sha256_digest(&ctx->pools[YARROW_SLOW], sizeof(digest), digest);
/* Feed it into the fast pool */
sha256_update(&ctx->pools[YARROW_FAST], sizeof(digest), digest);
yarrow_fast_reseed(ctx);
/* Reset estimates. */
for (i = 0; i<ctx->nsources; i++)
ctx->sources[i].estimate[YARROW_SLOW] = 0;
}
yarrow256_update(struct yarrow256_ctx *ctx,
unsigned source_index, unsigned entropy,
unsigned length, const uint8_t *data)
{
enum yarrow_pool_id current;
struct yarrow_source *source;
assert(source_index < ctx->nsources);
if (!length)
/* Nothing happens */
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
source = &ctx->sources[source_index];
if (!ctx->seeded)
/* While seeding, use the slow pool */
current = YARROW_SLOW;
else
{
current = source->next;
source->next = !source->next;
}
sha256_update(&ctx->pools[current], length, data);
/* NOTE: We should be careful to avoid overflows in the estimates. */
if (source->estimate[current] < YARROW_MAX_ENTROPY)
{
if (entropy > YARROW_MAX_ENTROPY)
entropy = YARROW_MAX_ENTROPY;
if ( (length < (YARROW_MAX_ENTROPY / YARROW_MULTIPLIER))
&& (entropy > YARROW_MULTIPLIER * length) )
entropy = YARROW_MULTIPLIER * length;
/* FIXME: Calling a more sophisticated estimater should be done
* here. */
entropy += source->estimate[current];
if (entropy > YARROW_MAX_ENTROPY)
entropy = YARROW_MAX_ENTROPY;
source->estimate[current] = entropy;
}
/* Check for seed/reseed */
switch(current)
{
case YARROW_FAST:
fprintf(stderr,
"yarrow256_update: source_index = %d,\n"
" fast pool estimate = %d\n",
source_index, source->estimate[YARROW_FAST]);
#endif
if (source->estimate[YARROW_FAST] >= YARROW_FAST_THRESHOLD)
{
yarrow_fast_reseed(ctx);
return 1;
}
else
return 0;
case YARROW_SLOW:
{
/* FIXME: This is somewhat inefficient. It would be better to
* either maintain the count, or do this loop only if the
* current source just crossed the threshold. */
if (!yarrow256_needed_sources(ctx))
{
yarrow_slow_reseed(ctx);
ctx->seeded = 1;
yarrow_gate(struct yarrow256_ctx *ctx)
uint8_t key[AES_MAX_KEY_SIZE];
unsigned i;
for (i = 0; i < sizeof(key); i+= AES_BLOCK_SIZE)
yarrow_generate_block(ctx, key + i);
aes_set_encrypt_key(&ctx->key, sizeof(key), key);
}
void
yarrow256_random(struct yarrow256_ctx *ctx, unsigned length, uint8_t *dst)
{
assert(ctx->seeded);
while (length >= AES_BLOCK_SIZE)
yarrow_generate_block(ctx, dst);
dst += AES_BLOCK_SIZE;
length -= AES_BLOCK_SIZE;
}
if (length)
{
uint8_t buffer[AES_BLOCK_SIZE];
assert(length < AES_BLOCK_SIZE);
yarrow_generate_block(ctx, buffer);
memcpy(dst, buffer, length);
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
int
yarrow256_is_seeded(struct yarrow256_ctx *ctx)
{
return ctx->seeded;
}
unsigned
yarrow256_needed_sources(struct yarrow256_ctx *ctx)
{
/* FIXME: This is somewhat inefficient. It would be better to
* either maintain the count, or do this loop only if the
* current source just crossed the threshold. */
unsigned k, i;
for (i = k = 0; i < ctx->nsources; i++)
if (ctx->sources[i].estimate[YARROW_SLOW] >= YARROW_SLOW_THRESHOLD)
k++;
#if YARROW_DEBUG
fprintf(stderr,
"yarrow256_needed_sources: source_index = %d,\n"
" slow pool estimate = %d,\n"
" number of sources above threshold = %d\n",
source_index, source->estimate[YARROW_SLOW], k);
#endif
return (k < YARROW_SLOW_K) ? (YARROW_SLOW_K - k) : 0;
}
void
yarrow256_force_reseed(struct yarrow256_ctx *ctx)
{
yarrow_slow_reseed(ctx);
}