Select Git revision
ChangeLog.1
-
David Byers authored
Free everything on exit The server should now exit with zero allocated strings and zero allocated blocks. Test cases Added a few test cases for improved coverage and recently fixed bugs.
David Byers authoredFree everything on exit The server should now exit with zero allocated strings and zero allocated blocks. Test cases Added a few test cases for improved coverage and recently fixed bugs.
To find the state of this project's repository at the time of any of these versions, check out the tags.
desCode.h 10.96 KiB
/* desCode.h
*
* $Id$ */
/* des - fast & portable DES encryption & decryption.
* Copyright (C) 1992 Dana L. How
* Please see the file `descore.README' for the complete copyright notice.
*/
#include "des.h"
extern const uint32_t des_keymap[];
extern const uint32_t des_bigmap[];
/* optional customization:
* the idea here is to alter the code so it will still run correctly
* on any machine, but the quickest on the specific machine in mind.
* note that these silly tweaks can give you a 15%-20% speed improvement
* on the sparc -- it's probably even more significant on the 68000. */
/* take care of machines with incredibly few registers */
#if defined(i386)
#define REGISTER /* only x, y, z will be declared register */
#else
#define REGISTER register
#endif /* i386 */
/* is auto inc/dec faster than 7bit unsigned indexing? */
#if defined(vax) || defined(mc68000)
#define FIXR r += 32;
#define FIXS s += 8;
#define PREV(v,o) *--v
#define NEXT(v,o) *v++
#else
#define FIXR
#define FIXS
#define PREV(v,o) v[o]
#define NEXT(v,o) v[o]
#endif
/* if no machine type, default is indexing, 6 registers and cheap literals */
#if !defined(i386) && !defined(vax) && !defined(mc68000) && !defined(sparc)
#define vax
#endif
/* handle a compiler which can't reallocate registers */
/* The BYTE type is used as parameter for the encrypt/decrypt functions.
* It's pretty bad to have the function prototypes depend on
* a macro definition that the users of the function doesn't
* know about. /Niels */
#if 0 /* didn't feel like deleting */
#define SREGFREE ; s = (uint8_t *) D
#define DEST s
#define D m0
#define BYTE uint32_t
#else
#define SREGFREE
#define DEST d
#define D d
#define BYTE uint8_t
#endif
/* handle constants in the optimal way for 386 & vax */
/* 386: we declare 3 register variables (see above) and use 3 more variables;
* vax: we use 6 variables, all declared register;
* we assume address literals are cheap & unrestricted;
* we assume immediate constants are cheap & unrestricted. */
#if defined(i386) || defined(vax)
#define MQ0 des_bigmap
#define MQ1 (des_bigmap + 64)
#define MQ2 (des_bigmap + 128)
#define MQ3 (des_bigmap + 192)
#define HQ0(z) /* z |= 0x01000000L; */
#define HQ2(z) /* z |= 0x03000200L; */
#define LQ0(z) 0xFCFC & z
#define LQ1(z) 0xFCFC & z
#define LQ2(z) 0xFCFC & z
#define LQ3(z) 0xFCFC & z
#define SQ 16
#define MS0 des_keymap
#define MS1 (des_keymap + 64)
#define MS2 (des_keymap + 128)
#define MS3 (des_keymap + 192)
#define MS4 (des_keymap + 256)
#define MS5 (des_keymap + 320)
#define MS6 (des_keymap + 384)
#define MS7 (des_keymap + 448)
#define HS(z)
#define LS0(z) 0xFC & z
#define LS1(z) 0xFC & z
#define LS2(z) 0xFC & z
#define LS3(z) 0xFC & z
#define REGQUICK
#define SETQUICK
#define REGSMALL
#define SETSMALL
#endif /* defined(i386) || defined(vax) */
/* handle constants in the optimal way for mc68000 */
/* in addition to the core 6 variables, we declare 3 registers holding constants
* and 4 registers holding address literals.
* at most 6 data values and 5 address values are actively used at once.
* we assume address literals are so expensive we never use them;
* we assume constant index offsets > 127 are expensive, so they are not used.
* we assume all constants are expensive and put them in registers,
* including shift counts greater than 8. */
#if defined(mc68000)
#define MQ0 m0
#define MQ1 m1
#define MQ2 m2
#define MQ3 m3
#define HQ0(z)
#define HQ2(z)
#define LQ0(z) k0 & z
#define LQ1(z) k0 & z
#define LQ2(z) k0 & z
#define LQ3(z) k0 & z
#define SQ k1
#define MS0 m0
#define MS1 m0
#define MS2 m1
#define MS3 m1
#define MS4 m2
#define MS5 m2
#define MS6 m3
#define MS7 m3
#define HS(z) z |= k0;
#define LS0(z) k1 & z
#define LS1(z) k2 & z
#define LS2(z) k1 & z
#define LS3(z) k2 & z
#define REGQUICK \
register uint32_t k0, k1; \
register uint32_t *m0, *m1, *m2, *m3;
#define SETQUICK \
; k0 = 0xFCFC \
; k1 = 16 \
/*k2 = 28 to speed up ROL */ \
; m0 = des_bigmap \
; m1 = m0 + 64 \
; m2 = m1 + 64 \
; m3 = m2 + 64
#define REGSMALL \
register uint32_t k0, k1, k2; \
register uint32_t *m0, *m1, *m2, *m3;
#define SETSMALL \
; k0 = 0x01000100L \
; k1 = 0x0FC \
; k2 = 0x1FC \
; m0 = des_keymap \
; m1 = m0 + 128 \
; m2 = m1 + 128 \
; m3 = m2 + 128
#endif /* defined(mc68000) */
/* handle constants in the optimal way for sparc */
/* in addition to the core 6 variables, we either declare:
* 4 registers holding address literals and 1 register holding a constant, or
* 8 registers holding address literals.
* up to 14 register variables are declared (sparc has %i0-%i5, %l0-%l7).
* we assume address literals are so expensive we never use them;
* we assume any constant with >10 bits is expensive and put it in a register,
* and any other is cheap and is coded in-line. */
#if defined(sparc)
#define MQ0 m0
#define MQ1 m1
#define MQ2 m2
#define MQ3 m3
#define HQ0(z)
#define HQ2(z)
#define LQ0(z) k0 & z
#define LQ1(z) k0 & z
#define LQ2(z) k0 & z
#define LQ3(z) k0 & z
#define SQ 16
#define MS0 m0
#define MS1 m1
#define MS2 m2
#define MS3 m3
#define MS4 m4
#define MS5 m5
#define MS6 m6
#define MS7 m7
#define HS(z)
#define LS0(z) 0xFC & z
#define LS1(z) 0xFC & z
#define LS2(z) 0xFC & z
#define LS3(z) 0xFC & z
#define REGQUICK \
register uint32_t k0; \
register uint32_t *m0, *m1, *m2, *m3;
#define SETQUICK \
; k0 = 0xFCFC \
; m0 = des_bigmap \
; m1 = m0 + 64 \
; m2 = m1 + 64 \
; m3 = m2 + 64
#define REGSMALL \
register uint32_t *m0, *m1, *m2, *m3, *m4, *m5, *m6, *m7;
#define SETSMALL \
; m0 = des_keymap \
; m1 = m0 + 64 \
; m2 = m1 + 64 \
; m3 = m2 + 64 \
; m4 = m3 + 64 \
; m5 = m4 + 64 \
; m6 = m5 + 64 \
; m7 = m6 + 64
#endif /* defined(sparc) */
/* some basic stuff */
/* generate addresses from a base and an index */
/* FIXME: This is used only as *ADD(msi,lsi(z)) or *ADD(mqi,lqi(z)).
* Why not use plain indexing instead? /Niels */
#define ADD(b,x) (uint32_t *) ((uint8_t *)b + (x))
/* low level rotate operations */
#define NOP(d,c,o)
#define ROL(d,c,o) d = d << c | d >> o
#define ROR(d,c,o) d = d >> c | d << o
#define ROL1(d) ROL(d, 1, 31)
#define ROR1(d) ROR(d, 1, 31)
/* elementary swap for doing IP/FP */
#define SWAP(x,y,m,b) \
z = ((x >> b) ^ y) & m; \
x ^= z << b; \
y ^= z
/* the following macros contain all the important code fragments */
/* load input data, then setup special registers holding constants */
#define TEMPQUICK(LOAD) \
REGQUICK \
LOAD() \
SETQUICK
#define TEMPSMALL(LOAD) \
REGSMALL \
LOAD() \
SETSMALL
/* load data */
#define LOADDATA(x,y) \
FIXS \
y = PREV(s, 7); y<<= 8; \
y |= PREV(s, 6); y<<= 8; \
y |= PREV(s, 5); y<<= 8; \
y |= PREV(s, 4); \
x = PREV(s, 3); x<<= 8; \
x |= PREV(s, 2); x<<= 8; \
x |= PREV(s, 1); x<<= 8; \
x |= PREV(s, 0) \
SREGFREE
/* load data without initial permutation and put into efficient position */
#define LOADCORE() \
LOADDATA(x, y); \
ROR1(x); \
ROR1(y)
/* load data, do the initial permutation and put into efficient position */
#define LOADFIPS() \
LOADDATA(y, x); \
SWAP(x, y, 0x0F0F0F0FL, 004); \
SWAP(y, x, 0x0000FFFFL, 020); \
SWAP(x, y, 0x33333333L, 002); \
SWAP(y, x, 0x00FF00FFL, 010); \
ROR1(x); \
z = (x ^ y) & 0x55555555L; \
y ^= z; \
x ^= z; \
ROR1(y)
/* core encryption/decryption operations */
/* S box mapping and P perm */
#define KEYMAPSMALL(x,z,mq0,mq1,hq,lq0,lq1,sq,ms0,ms1,ms2,ms3,hs,ls0,ls1,ls2,ls3)\
hs(z) \
x ^= *ADD(ms3, ls3(z)); \
z>>= 8; \
x ^= *ADD(ms2, ls2(z)); \
z>>= 8; \
x ^= *ADD(ms1, ls1(z)); \
z>>= 8; \
x ^= *ADD(ms0, ls0(z))
/* alternate version: use 64k of tables */
#define KEYMAPQUICK(x,z,mq0,mq1,hq,lq0,lq1,sq,ms0,ms1,ms2,ms3,hs,ls0,ls1,ls2,ls3)\
hq(z) \
x ^= *ADD(mq0, lq0(z)); \
z>>= sq; \
x ^= *ADD(mq1, lq1(z))
/* apply 24 key bits and do the odd s boxes */
#define S7S1(x,y,z,r,m,KEYMAP,LOAD) \
z = LOAD(r, m); \
z ^= y; \
KEYMAP(x,z,MQ0,MQ1,HQ0,LQ0,LQ1,SQ,MS0,MS1,MS2,MS3,HS,LS0,LS1,LS2,LS3)
/* apply 24 key bits and do the even s boxes */
#define S6S0(x,y,z,r,m,KEYMAP,LOAD) \
z = LOAD(r, m); \
z ^= y; \
ROL(z, 4, 28); \
KEYMAP(x,z,MQ2,MQ3,HQ2,LQ2,LQ3,SQ,MS4,MS5,MS6,MS7,HS,LS0,LS1,LS2,LS3)
/* actual iterations. equivalent except for UPDATE & swapping m and n */
#define ENCR(x,y,z,r,m,n,KEYMAP) \
S7S1(x,y,z,r,m,KEYMAP,NEXT); \
S6S0(x,y,z,r,n,KEYMAP,NEXT)
#define DECR(x,y,z,r,m,n,KEYMAP) \
S6S0(x,y,z,r,m,KEYMAP,PREV); \
S7S1(x,y,z,r,n,KEYMAP,PREV)
/* write out result in correct byte order */
#define SAVEDATA(x,y) \
NEXT(DEST, 0) = x; x>>= 8; \
NEXT(DEST, 1) = x; x>>= 8; \
NEXT(DEST, 2) = x; x>>= 8; \
NEXT(DEST, 3) = x; \
NEXT(DEST, 4) = y; y>>= 8; \
NEXT(DEST, 5) = y; y>>= 8; \
NEXT(DEST, 6) = y; y>>= 8; \
NEXT(DEST, 7) = y
/* write out result */
#define SAVECORE() \
ROL1(x); \
ROL1(y); \
SAVEDATA(y, x)
/* do final permutation and write out result */
#define SAVEFIPS() \
ROL1(x); \
z = (x ^ y) & 0x55555555L; \
y ^= z; \
x ^= z; \
ROL1(y); \
SWAP(x, y, 0x00FF00FFL, 010); \
SWAP(y, x, 0x33333333L, 002); \
SWAP(x, y, 0x0000FFFFL, 020); \
SWAP(y, x, 0x0F0F0F0FL, 004); \
SAVEDATA(x, y)
/* the following macros contain the encryption/decryption skeletons */
#define ENCRYPT(NAME, TEMP, LOAD, KEYMAP, SAVE) \
\
void \
NAME(REGISTER BYTE *D, \
REGISTER const uint32_t *r, \
REGISTER const uint8_t *s) \
{ \
register uint32_t x, y, z; \
\
/* declare temps & load data */ \
TEMP(LOAD); \
\
/* do the 16 iterations */ \
ENCR(x,y,z,r, 0, 1,KEYMAP); \
ENCR(y,x,z,r, 2, 3,KEYMAP); \
ENCR(x,y,z,r, 4, 5,KEYMAP); \
ENCR(y,x,z,r, 6, 7,KEYMAP); \
ENCR(x,y,z,r, 8, 9,KEYMAP); \
ENCR(y,x,z,r,10,11,KEYMAP); \
ENCR(x,y,z,r,12,13,KEYMAP); \
ENCR(y,x,z,r,14,15,KEYMAP); \
ENCR(x,y,z,r,16,17,KEYMAP); \
ENCR(y,x,z,r,18,19,KEYMAP); \
ENCR(x,y,z,r,20,21,KEYMAP); \
ENCR(y,x,z,r,22,23,KEYMAP); \
ENCR(x,y,z,r,24,25,KEYMAP); \
ENCR(y,x,z,r,26,27,KEYMAP); \
ENCR(x,y,z,r,28,29,KEYMAP); \
ENCR(y,x,z,r,30,31,KEYMAP); \
\
/* save result */ \
SAVE(); \
\
return; \
}
#define DECRYPT(NAME, TEMP, LOAD, KEYMAP, SAVE) \
\
void \
NAME(REGISTER BYTE *D, \
REGISTER const uint32_t *r, \
REGISTER const uint8_t *s) \
{ \
register uint32_t x, y, z; \
\
/* declare temps & load data */ \
TEMP(LOAD); \
\
/* do the 16 iterations */ \
FIXR \
DECR(x,y,z,r,31,30,KEYMAP); \
DECR(y,x,z,r,29,28,KEYMAP); \
DECR(x,y,z,r,27,26,KEYMAP); \
DECR(y,x,z,r,25,24,KEYMAP); \
DECR(x,y,z,r,23,22,KEYMAP); \
DECR(y,x,z,r,21,20,KEYMAP); \
DECR(x,y,z,r,19,18,KEYMAP); \
DECR(y,x,z,r,17,16,KEYMAP); \
DECR(x,y,z,r,15,14,KEYMAP); \
DECR(y,x,z,r,13,12,KEYMAP); \
DECR(x,y,z,r,11,10,KEYMAP); \
DECR(y,x,z,r, 9, 8,KEYMAP); \
DECR(x,y,z,r, 7, 6,KEYMAP); \
DECR(y,x,z,r, 5, 4,KEYMAP); \
DECR(x,y,z,r, 3, 2,KEYMAP); \
DECR(y,x,z,r, 1, 0,KEYMAP); \
\
/* save result */ \
SAVE(); \
\
return; \
}