Commit ad28f74a authored by Per Cederqvist's avatar Per Cederqvist
Browse files

This file adds 3 source files from

http://www.lysator.liu.se/~nisse/archive/nettle-1.15.tar.gz under
different names.

    Original name	lyskomd name

    macros.h 		src/server/nettle-macros.h
    sha.h		src/server/nettle-sha.h
    sha256.c		src/server/nettle-sha256.c
parent 8903b938
refactor-cached_get_text
refactor-cached_get_text-part-2
From: Per Cederqvist <ceder@lysator.liu.se>
Subject: patch refactor-cached_get_text-part-2.patch
Subject: This file adds 3 source files from http://www.lysator.liu.se/~nisse/archive/nettle-1.15.tar.gz under different names.
Original name lyskomd name
macros.h src/server/nettle-macros.h
sha.h src/server/nettle-sha.h
sha256.c src/server/nettle-sha256.c
......@@ -62,3 +62,18 @@ from GNU fileutils 4.1.
License: GNU General Public License, version 2
Copyright owner: Free Software Foundation
More info: src/server/fsusage.h, src/server/fsusage.c, m4/fsusage.m4
nettle
======
The following files were taken from
http://www.lysator.liu.se/~nisse/archive/nettle-1.15.tar.gz:
Original name lyskomd name
macros.h src/server/nettle-macros.h
sha.h src/server/nettle-sha.h
sha256.c src/server/nettle-sha256.c
License: GNU Lesser General Public License version 2.1, or later
Copyright owner: Niels Möller
/* macros.h
*
*/
/* nettle, low-level cryptographics library
*
* Copyright (C) 2001 Niels Mller
*
* The nettle library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* The nettle library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the nettle library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*/
#ifndef NETTLE_MACROS_H_INCLUDED
#define NETTLE_MACROS_H_INCLUDED
/* Reads a 32-bit integer, in network, big-endian, byte order */
#define READ_UINT32(p) \
( (((uint32_t) (p)[0]) << 24) \
| (((uint32_t) (p)[1]) << 16) \
| (((uint32_t) (p)[2]) << 8) \
| ((uint32_t) (p)[3]))
#define WRITE_UINT32(p, i) \
do { \
(p)[0] = ((i) >> 24) & 0xff; \
(p)[1] = ((i) >> 16) & 0xff; \
(p)[2] = ((i) >> 8) & 0xff; \
(p)[3] = (i) & 0xff; \
} while(0)
/* Analogous macros, for 24 and 16 bit numbers */
#define READ_UINT24(p) \
( (((uint32_t) (p)[0]) << 16) \
| (((uint32_t) (p)[1]) << 8) \
| ((uint32_t) (p)[2]))
#define WRITE_UINT24(p, i) \
do { \
(p)[0] = ((i) >> 16) & 0xff; \
(p)[1] = ((i) >> 8) & 0xff; \
(p)[2] = (i) & 0xff; \
} while(0)
#define READ_UINT16(p) \
( (((uint32_t) (p)[0]) << 8) \
| ((uint32_t) (p)[1]))
#define WRITE_UINT16(p, i) \
do { \
(p)[0] = ((i) >> 8) & 0xff; \
(p)[1] = (i) & 0xff; \
} while(0)
/* And the other, little-endian, byteorder */
#define LE_READ_UINT32(p) \
( (((uint32_t) (p)[3]) << 24) \
| (((uint32_t) (p)[2]) << 16) \
| (((uint32_t) (p)[1]) << 8) \
| ((uint32_t) (p)[0]))
#define LE_WRITE_UINT32(p, i) \
do { \
(p)[3] = ((i) >> 24) & 0xff; \
(p)[2] = ((i) >> 16) & 0xff; \
(p)[1] = ((i) >> 8) & 0xff; \
(p)[0] = (i) & 0xff; \
} while(0)
/* Analogous macros, for 16 bit numbers */
#define LE_READ_UINT16(p) \
( (((uint32_t) (p)[1]) << 8) \
| ((uint32_t) (p)[0]))
#define LE_WRITE_UINT16(p, i) \
do { \
(p)[1] = ((i) >> 8) & 0xff; \
(p)[0] = (i) & 0xff; \
} while(0)
/* Macro to make it easier to loop over several blocks. */
#define FOR_BLOCKS(length, dst, src, blocksize) \
assert( !((length) % (blocksize))); \
for (; (length); ((length) -= (blocksize), \
(dst) += (blocksize), \
(src) += (blocksize)) )
#endif /* NETTLE_MACROS_H_INCLUDED */
/* sha.h
*
* The sha1 and sha256 hash functions.
*/
/* nettle, low-level cryptographics library
*
* Copyright (C) 2001 Niels Mller
*
* The nettle library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* The nettle library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the nettle library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*/
#ifndef NETTLE_SHA_H_INCLUDED
#define NETTLE_SHA_H_INCLUDED
#include "nettle-types.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Name mangling */
#define sha1_init nettle_sha1_init
#define sha1_update nettle_sha1_update
#define sha1_digest nettle_sha1_digest
#define sha256_init nettle_sha256_init
#define sha256_update nettle_sha256_update
#define sha256_digest nettle_sha256_digest
/* SHA1 */
#define SHA1_DIGEST_SIZE 20
#define SHA1_DATA_SIZE 64
/* Digest is kept internally as 5 32-bit words. */
#define _SHA1_DIGEST_LENGTH 5
struct sha1_ctx
{
uint32_t digest[_SHA1_DIGEST_LENGTH]; /* Message digest */
uint32_t count_low, count_high; /* 64-bit block count */
uint8_t block[SHA1_DATA_SIZE]; /* SHA1 data buffer */
unsigned int index; /* index into buffer */
};
void
sha1_init(struct sha1_ctx *ctx);
void
sha1_update(struct sha1_ctx *ctx,
unsigned length,
const uint8_t *data);
void
sha1_digest(struct sha1_ctx *ctx,
unsigned length,
uint8_t *digest);
/* Internal compression function. STATE points to 5 uint32_t words,
and DATA points to 64 bytes of input data, possibly unaligned. */
void
_nettle_sha1_compress(uint32_t *state, const uint8_t *data);
/* SHA256 */
#define SHA256_DIGEST_SIZE 32
#define SHA256_DATA_SIZE 64
/* Digest is kept internally as 8 32-bit words. */
#define _SHA256_DIGEST_LENGTH 8
struct sha256_ctx
{
uint32_t state[_SHA256_DIGEST_LENGTH]; /* State variables */
uint32_t count_low, count_high; /* 64-bit block count */
uint8_t block[SHA256_DATA_SIZE]; /* SHA256 data buffer */
unsigned int index; /* index into buffer */
};
void
sha256_init(struct sha256_ctx *ctx);
void
sha256_update(struct sha256_ctx *ctx,
unsigned length,
const uint8_t *data);
void
sha256_digest(struct sha256_ctx *ctx,
unsigned length,
uint8_t *digest);
#ifdef __cplusplus
}
#endif
#endif /* NETTLE_SHA_H_INCLUDED */
/* sha256.h
*
* The sha256 hash function.
*
* See http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
*/
/* nettle, low-level cryptographics library
*
* Copyright (C) 2001 Niels Mller
*
* The nettle library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* The nettle library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the nettle library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*/
/* Modelled after the sha1.c code by Peter Gutmann. */
#if HAVE_CONFIG_H
# include "config.h"
#endif
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "sha.h"
#include "macros.h"
/* A block, treated as a sequence of 32-bit words. */
#define SHA256_DATA_LENGTH 16
#define ROTR(n,x) ((x)>>(n) | ((x)<<(32-(n))))
#define SHR(n,x) ((x)>>(n))
/* The SHA256 functions. The Choice function is the same as the SHA1
function f1, and the majority function is the same as the SHA1 f3
function. They can be optimized to save one boolean operation each
- thanks to Rich Schroeppel, rcs@cs.arizona.edu for discovering
this */
/* #define Choice(x,y,z) ( ( (x) & (y) ) | ( ~(x) & (z) ) ) */
#define Choice(x,y,z) ( (z) ^ ( (x) & ( (y) ^ (z) ) ) )
/* #define Majority(x,y,z) ( ((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)) ) */
#define Majority(x,y,z) ( ((x) & (y)) ^ ((z) & ((x) ^ (y))) )
#define S0(x) (ROTR(2,(x)) ^ ROTR(13,(x)) ^ ROTR(22,(x)))
#define S1(x) (ROTR(6,(x)) ^ ROTR(11,(x)) ^ ROTR(25,(x)))
#define s0(x) (ROTR(7,(x)) ^ ROTR(18,(x)) ^ SHR(3,(x)))
#define s1(x) (ROTR(17,(x)) ^ ROTR(19,(x)) ^ SHR(10,(x)))
/* Generated by the shadata program. */
static const uint32_t
K[64] =
{
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
0xe49b69c1UL, 0xefbe4786UL, 0xfc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
0xc6e00bf3UL, 0xd5a79147UL, 0x6ca6351UL, 0x14292967UL,
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL,
};
/* The initial expanding function. The hash function is defined over an
64-word expanded input array W, where the first 16 are copies of the input
data, and the remaining 64 are defined by
W[ t ] = s1(W[t-2]) + W[t-7] + s0(W[i-15]) + W[i-16]
This implementation generates these values on the fly in a circular
buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
optimization.
*/
#define EXPAND(W,i) \
( W[(i) & 15 ] += (s1(W[((i)-2) & 15]) + W[((i)-7) & 15] + s0(W[((i)-15) & 15])) )
/* The prototype SHA sub-round. The fundamental sub-round is:
T1 = h + S1(e) + Choice(e,f,g) + K[t] + W[t]
T2 = S0(a) + Majority(a,b,c)
a' = T1+T2
b' = a
c' = b
d' = c
e' = d + T1
f' = e
g' = f
h' = g
but this is implemented by unrolling the loop 8 times and renaming
the variables
( h, a, b, c, d, e, f, g ) = ( a, b, c, d, e, f, g, h ) each
iteration. This code is then replicated 8, using the next 8 values
from the W[] array each time */
/* FIXME: We can probably reorder this to optimize away at least one
* of T1 and T2. It's crucial that DATA is only used once, as that
* argument will have side effects. */
#define ROUND(a,b,c,d,e,f,g,h,k,data) do { \
uint32_t T1 = h + S1(e) + Choice(e,f,g) + k + data; \
uint32_t T2 = S0(a) + Majority(a,b,c); \
d += T1; \
h = T1 + T2; \
} while (0)
/* Initialize the SHA values */
void
sha256_init(struct sha256_ctx *ctx)
{
/* Initial values, also generated by the shadata program. */
static const uint32_t H0[_SHA256_DIGEST_LENGTH] =
{
0x6a09e667UL, 0xbb67ae85UL, 0x3c6ef372UL, 0xa54ff53aUL,
0x510e527fUL, 0x9b05688cUL, 0x1f83d9abUL, 0x5be0cd19UL,
};
memcpy(ctx->state, H0, sizeof(H0));
/* Initialize bit count */
ctx->count_low = ctx->count_high = 0;
/* Initialize buffer */
ctx->index = 0;
}
/* Perform the SHA transformation. Note that this code, like MD5, seems to
break some optimizing compilers due to the complexity of the expressions
and the size of the basic block. It may be necessary to split it into
sections, e.g. based on the four subrounds
Note that this function destroys the data area */
static void
sha256_transform(uint32_t *state, uint32_t *data)
{
uint32_t A, B, C, D, E, F, G, H; /* Local vars */
unsigned i;
const uint32_t *k;
uint32_t *d;
/* Set up first buffer and local data buffer */
A = state[0];
B = state[1];
C = state[2];
D = state[3];
E = state[4];
F = state[5];
G = state[6];
H = state[7];
/* Heavy mangling */
/* First 16 subrounds that act on the original data */
for (i = 0, k = K, d = data; i<16; i+=8, k += 8, d+= 8)
{
ROUND(A, B, C, D, E, F, G, H, k[0], d[0]);
ROUND(H, A, B, C, D, E, F, G, k[1], d[1]);
ROUND(G, H, A, B, C, D, E, F, k[2], d[2]);
ROUND(F, G, H, A, B, C, D, E, k[3], d[3]);
ROUND(E, F, G, H, A, B, C, D, k[4], d[4]);
ROUND(D, E, F, G, H, A, B, C, k[5], d[5]);
ROUND(C, D, E, F, G, H, A, B, k[6], d[6]);
ROUND(B, C, D, E, F, G, H, A, k[7], d[7]);
}
for (; i<64; i += 16, k+= 16)
{
ROUND(A, B, C, D, E, F, G, H, k[ 0], EXPAND(data, 0));
ROUND(H, A, B, C, D, E, F, G, k[ 1], EXPAND(data, 1));
ROUND(G, H, A, B, C, D, E, F, k[ 2], EXPAND(data, 2));
ROUND(F, G, H, A, B, C, D, E, k[ 3], EXPAND(data, 3));
ROUND(E, F, G, H, A, B, C, D, k[ 4], EXPAND(data, 4));
ROUND(D, E, F, G, H, A, B, C, k[ 5], EXPAND(data, 5));
ROUND(C, D, E, F, G, H, A, B, k[ 6], EXPAND(data, 6));
ROUND(B, C, D, E, F, G, H, A, k[ 7], EXPAND(data, 7));
ROUND(A, B, C, D, E, F, G, H, k[ 8], EXPAND(data, 8));
ROUND(H, A, B, C, D, E, F, G, k[ 9], EXPAND(data, 9));
ROUND(G, H, A, B, C, D, E, F, k[10], EXPAND(data, 10));
ROUND(F, G, H, A, B, C, D, E, k[11], EXPAND(data, 11));
ROUND(E, F, G, H, A, B, C, D, k[12], EXPAND(data, 12));
ROUND(D, E, F, G, H, A, B, C, k[13], EXPAND(data, 13));
ROUND(C, D, E, F, G, H, A, B, k[14], EXPAND(data, 14));
ROUND(B, C, D, E, F, G, H, A, k[15], EXPAND(data, 15));
}
/* Update state */
state[0] += A;
state[1] += B;
state[2] += C;
state[3] += D;
state[4] += E;
state[5] += F;
state[6] += G;
state[7] += H;
}
static void
sha256_block(struct sha256_ctx *ctx, const uint8_t *block)
{
uint32_t data[SHA256_DATA_LENGTH];
int i;
/* Update block count */
if (!++ctx->count_low)
++ctx->count_high;
/* Endian independent conversion */
for (i = 0; i<SHA256_DATA_LENGTH; i++, block += 4)
data[i] = READ_UINT32(block);
sha256_transform(ctx->state, data);
}
void
sha256_update(struct sha256_ctx *ctx,
unsigned length, const uint8_t *buffer)
{
if (ctx->index)
{ /* Try to fill partial block */
unsigned left = SHA256_DATA_SIZE - ctx->index;
if (length < left)
{
memcpy(ctx->block + ctx->index, buffer, length);
ctx->index += length;
return; /* Finished */
}
else
{
memcpy(ctx->block + ctx->index, buffer, left);
sha256_block(ctx, ctx->block);
buffer += left;
length -= left;
}
}
while (length >= SHA256_DATA_SIZE)
{
sha256_block(ctx, buffer);
buffer += SHA256_DATA_SIZE;
length -= SHA256_DATA_SIZE;
}
/* Buffer leftovers */
/* NOTE: The corresponding sha1 code checks for the special case length == 0.
* That seems supoptimal, as I suspect it increases the number of branches. */
memcpy(ctx->block, buffer, length);
ctx->index = length;
}
/* Final wrapup - pad to SHA1_DATA_SIZE-byte boundary with the bit pattern
1 0* (64-bit count of bits processed, MSB-first) */
static void
sha256_final(struct sha256_ctx *ctx)
{
uint32_t data[SHA256_DATA_LENGTH];
int i;
int words;
i = ctx->index;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
assert(i < SHA256_DATA_SIZE);
ctx->block[i++] = 0x80;
/* Fill rest of word */
for( ; i & 3; i++)
ctx->block[i] = 0;
/* i is now a multiple of the word size 4 */
words = i >> 2;
for (i = 0; i < words; i++)
data[i] = READ_UINT32(ctx->block + 4*i);
if (words > (SHA256_DATA_LENGTH-2))
{ /* No room for length in this block. Process it and
* pad with another one */
for (i = words ; i < SHA256_DATA_LENGTH; i++)
data[i] = 0;
sha256_transform(ctx->state, data);
for (i = 0; i < (SHA256_DATA_LENGTH-2); i++)
data[i] = 0;
}
else
for (i = words ; i < SHA256_DATA_LENGTH - 2; i++)
data[i] = 0;
/* There are 512 = 2^9 bits in one block */
data[SHA256_DATA_LENGTH-2] = (ctx->count_high << 9) | (ctx->count_low >> 23);
data[SHA256_DATA_LENGTH-1] = (ctx->count_low << 9) | (ctx->index << 3);
sha256_transform(ctx->state, data);
}
void
sha256_digest(struct sha256_ctx *ctx,
unsigned length,
uint8_t *digest)
{
unsigned i;
unsigned words;
unsigned leftover;
assert(length <= SHA256_DIGEST_SIZE);
sha256_final(ctx);
words = length / 4;
leftover = length % 4;
for (i = 0; i < words; i++, digest += 4)
WRITE_UINT32(digest, ctx->state[i]);
if (leftover)
{
uint32_t word;
unsigned j = leftover;
assert(i < _SHA256_DIGEST_LENGTH);
word = ctx->state[i];
switch (leftover)
{
default:
abort();
case 3:
digest[--j] = (word >> 8) & 0xff;
/* Fall through */
case 2:
digest[--j] = (word >> 16) & 0xff;
/* Fall through */
case 1:
digest[--j] = (word >> 24) & 0xff;
}
}
sha256_init(ctx);
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment