Skip to content
Snippets Groups Projects
aes.c 4.33 KiB
Newer Older
  • Learn to ignore specific revisions
  • Niels Möller's avatar
    Niels Möller committed
    /* aes.c
    
    Niels Möller's avatar
    Niels Möller committed
     *
     * The aes/rijndael block cipher.
     */
    
    /* nettle, low-level cryptographics library
     *
     * Copyright (C) 2000, 2001 Rafael R. Sevilla, Niels Mller
     *  
     * The nettle library is free software; you can redistribute it and/or modify
     * it under the terms of the GNU Lesser General Public License as published by
     * the Free Software Foundation; either version 2.1 of the License, or (at your
     * option) any later version.
     * 
    
    Niels Möller's avatar
    Niels Möller committed
     * The nettle library is distributed in the hope that it will be useful, but
    
    Niels Möller's avatar
    Niels Möller committed
     * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
     * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
     * License for more details.
     * 
     * You should have received a copy of the GNU Lesser General Public License
    
    Niels Möller's avatar
    Niels Möller committed
     * along with the nettle library; see the file COPYING.LIB.  If not, write to
    
    Niels Möller's avatar
    Niels Möller committed
     * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
     * MA 02111-1307, USA.
     */
    
    /* Originally written by Rafael R. Sevilla <dido@pacific.net.ph> */
    
    
    Niels Möller's avatar
    Niels Möller committed
    
    #include <assert.h>
    
    /* Key addition that also packs every byte in the key to a word rep. */
    static void
    key_addition_8to32(const uint8_t *txt, const uint32_t *keys, uint32_t *out)
    {
      const uint8_t *ptr;
      unsigned i, j;
      uint32_t val;
    
      ptr = txt;
      for (i=0; i<4; i++)
        {
          /* FIXME: Use the READ_UINT32 or LE_READ_UINT32 macro. */
          val = 0;
          for (j=0; j<4; j++)
    	val |= (*ptr++ << 8*j);
          out[i] = keys[i]^val;
        }
    }
    
    static void
    key_addition32(const uint32_t *txt, const uint32_t *keys, uint32_t *out)
    {
      unsigned i;
    
      for (i=0; i<4; i++)
        out[i] = keys[i] ^ txt[i];
    }
    
    static void
    key_addition32to8(const uint32_t *txt, const uint32_t *keys, uint8_t *out)
    {
      uint8_t *ptr;
      unsigned i, j;
      uint32_t val;
    
      ptr = out;
      for (i=0; i<4; i++)
        {
          /* FIXME: Use WRITE_UINT32 or LE_WRITE_UINT32 */
          val = txt[i] ^ keys[i];
          for (j=0; j<4; j++)
    	*ptr++ = (val >> 8*j) & 0xff;
        }
    }
    
    static const unsigned idx[4][4] = {
      { 0, 1, 2, 3 },
      { 1, 2, 3, 0 },
      { 2, 3, 0, 1 },
      { 3, 0, 1, 2 } };
    
    void
    aes_encrypt(struct aes_ctx *ctx,
    	    unsigned length, uint8_t *dst,
    	    const uint8_t *src)
    {
      unsigned r, j;
      uint32_t wtxt[4], t[4];		/* working ciphertext */
      uint32_t e;
    
      assert(!(length % AES_BLOCK_SIZE));
    
      for (; length;
           length -= AES_BLOCK_SIZE, src += AES_BLOCK_SIZE, dst += AES_BLOCK_SIZE)
        {
          key_addition_8to32(src, ctx->keys, wtxt);
          for (r=1; r<ctx->nrounds; r++)
    	{
    	  for (j=0; j<4; j++)
    	    {
    	      t[j] = dtbl[wtxt[j] & 0xff] ^
    		ROTRBYTE(dtbl[(wtxt[idx[1][j]] >> 8) & 0xff]^
    			 ROTRBYTE(dtbl[(wtxt[idx[2][j]] >> 16) & 0xff] ^
    				  ROTRBYTE(dtbl[(wtxt[idx[3][j]] >> 24) & 0xff])));
    	    }
    	  key_addition32(t, ctx->keys + r*4, wtxt);
    	}
      
          /* last round is special: there is no mixcolumn, so we can't use the big
    	 tables. */
          for (j=0; j<4; j++)
    	{
    	  e = wtxt[j] & 0xff;
    	  e |= (wtxt[idx[1][j]]) & (0xff << 8);
    	  e |= (wtxt[idx[2][j]]) & (0xff << 16);
    	  e |= (wtxt[idx[3][j]]) & (0xff << 24);
    	  t[j] = e;
    	}
          for (j=0; j<4; j++)
    	t[j] = SUBBYTE(t[j], sbox);
    
          key_addition32to8(t, ctx->keys + 4*ctx->nrounds, dst);
        }
    }
    
    static const unsigned iidx[4][4] = {
      { 0, 1, 2, 3 },
      { 3, 0, 1, 2 },
      { 2, 3, 0, 1 },
      { 1, 2, 3, 0 } };
    
    void
    aes_decrypt(struct aes_ctx *ctx,
    	    unsigned length, uint8_t *dst,
    	    const uint8_t *src)
    {
      unsigned r, j;
      uint32_t wtxt[4], t[4];		/* working ciphertext */
      uint32_t e;
    
      assert(!(length % AES_BLOCK_SIZE));
    
      for (; length;
           length -= AES_BLOCK_SIZE, src += AES_BLOCK_SIZE, dst += AES_BLOCK_SIZE)
        {
          key_addition_8to32(src, ctx->ikeys + 4*ctx->nrounds, wtxt);
          for (r=ctx->nrounds-1; r> 0;  r--)
    	{
    	  for (j=0; j<4; j++)
    	    {
    	      t[j] = itbl[wtxt[j] & 0xff] ^
    		ROTRBYTE(itbl[(wtxt[iidx[1][j]] >> 8) & 0xff]^
    			 ROTRBYTE(itbl[(wtxt[iidx[2][j]] >> 16) & 0xff] ^
    				  ROTRBYTE(itbl[(wtxt[iidx[3][j]] >> 24) & 0xff])));
    	    }
    	  key_addition32(t, ctx->ikeys + r*4, wtxt);
    	}
          /* last round is special: there is no mixcolumn, so we can't use the big
    	 tables. */
          for (j=0; j<4; j++)
    	{
    	  e = wtxt[j] & 0xff;
    	  e |= (wtxt[iidx[1][j]]) & (0xff << 8);
    	  e |= (wtxt[iidx[2][j]]) & (0xff << 16);
    	  e |= (wtxt[iidx[3][j]]) & (0xff << 24);
    	  t[j] = e;
    	}
          for (j=0; j<4; j++)
    	t[j] = SUBBYTE(t[j], isbox);
    
          key_addition32to8(t, ctx->ikeys, dst);
        }
    }