Newer
Older
/* bignum-random-prime.c
*
* Generation of random provable primes.
*/
/* nettle, low-level cryptographics library
*
*
* The nettle library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* The nettle library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the nettle library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02111-1301, USA.
*/
#if HAVE_CONFIG_H
# include "config.h"
#endif
#ifndef RANDOM_PRIME_VERBOSE
#define RANDOM_PRIME_VERBOSE 0
#endif
#include <assert.h>
#include <stdlib.h>
#if RANDOM_PRIME_VERBOSE
#include <stdio.h>
#define VERBOSE(x) (fputs((x), stderr))
#else
#define VERBOSE(x)
#endif
#include "bignum.h"
#include "macros.h"
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
/* Use a table of p_2 = 3 to p_{172} = 1021, used for sieving numbers
of up to 20 bits. */
#define NPRIMES 171
#define TRIAL_DIV_BITS 20
#define TRIAL_DIV_MASK ((1 << TRIAL_DIV_BITS) - 1)
/* A 20-bit number x is divisible by p iff
((x * inverse) & TRIAL_DIV_MASK) <= limit
*/
struct trial_div_info {
uint32_t inverse; /* p^{-1} (mod 2^20) */
uint32_t limit; /* floor( (2^20 - 1) / p) */
};
static const uint16_t
primes[NPRIMES] = {
3,5,7,11,13,17,19,23,
29,31,37,41,43,47,53,59,
61,67,71,73,79,83,89,97,
101,103,107,109,113,127,131,137,
139,149,151,157,163,167,173,179,
181,191,193,197,199,211,223,227,
229,233,239,241,251,257,263,269,
271,277,281,283,293,307,311,313,
317,331,337,347,349,353,359,367,
373,379,383,389,397,401,409,419,
421,431,433,439,443,449,457,461,
463,467,479,487,491,499,503,509,
521,523,541,547,557,563,569,571,
577,587,593,599,601,607,613,617,
619,631,641,643,647,653,659,661,
673,677,683,691,701,709,719,727,
733,739,743,751,757,761,769,773,
787,797,809,811,821,823,827,829,
839,853,857,859,863,877,881,883,
887,907,911,919,929,937,941,947,
953,967,971,977,983,991,997,1009,
1013,1019,1021,
};
static const uint32_t
prime_square[NPRIMES+1] = {
9,25,49,121,169,289,361,529,
841,961,1369,1681,1849,2209,2809,3481,
3721,4489,5041,5329,6241,6889,7921,9409,
10201,10609,11449,11881,12769,16129,17161,18769,
19321,22201,22801,24649,26569,27889,29929,32041,
32761,36481,37249,38809,39601,44521,49729,51529,
52441,54289,57121,58081,63001,66049,69169,72361,
73441,76729,78961,80089,85849,94249,96721,97969,
100489,109561,113569,120409,121801,124609,128881,134689,
139129,143641,146689,151321,157609,160801,167281,175561,
177241,185761,187489,192721,196249,201601,208849,212521,
214369,218089,229441,237169,241081,249001,253009,259081,
271441,273529,292681,299209,310249,316969,323761,326041,
332929,344569,351649,358801,361201,368449,375769,380689,
383161,398161,410881,413449,418609,426409,434281,436921,
452929,458329,466489,477481,491401,502681,516961,528529,
537289,546121,552049,564001,573049,579121,591361,597529,
619369,635209,654481,657721,674041,677329,683929,687241,
703921,727609,734449,737881,744769,769129,776161,779689,
786769,822649,829921,844561,863041,877969,885481,896809,
908209,935089,942841,954529,966289,982081,994009,1018081,
1026169,1038361,1042441,1L<<20
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
static const struct trial_div_info
trial_div_table[NPRIMES] = {
{699051,349525},{838861,209715},{748983,149796},{953251,95325},
{806597,80659},{61681,61680},{772635,55188},{866215,45590},
{180789,36157},{1014751,33825},{793517,28339},{1023001,25575},
{48771,24385},{870095,22310},{217629,19784},{710899,17772},
{825109,17189},{281707,15650},{502135,14768},{258553,14364},
{464559,13273},{934875,12633},{1001449,11781},{172961,10810},
{176493,10381},{203607,10180},{568387,9799},{788837,9619},
{770193,9279},{1032063,8256},{544299,8004},{619961,7653},
{550691,7543},{182973,7037},{229159,6944},{427445,6678},
{701195,6432},{370455,6278},{90917,6061},{175739,5857},
{585117,5793},{225087,5489},{298817,5433},{228877,5322},
{442615,5269},{546651,4969},{244511,4702},{83147,4619},
{769261,4578},{841561,4500},{732687,4387},{978961,4350},
{133683,4177},{65281,4080},{629943,3986},{374213,3898},
{708079,3869},{280125,3785},{641833,3731},{618771,3705},
{930477,3578},{778747,3415},{623751,3371},{40201,3350},
{122389,3307},{950371,3167},{1042353,3111},{18131,3021},
{285429,3004},{549537,2970},{166487,2920},{294287,2857},
{919261,2811},{636339,2766},{900735,2737},{118605,2695},
{10565,2641},{188273,2614},{115369,2563},{735755,2502},
{458285,2490},{914767,2432},{370513,2421},{1027079,2388},
{629619,2366},{462401,2335},{649337,2294},{316165,2274},
{484655,2264},{65115,2245},{326175,2189},{1016279,2153},
{990915,2135},{556859,2101},{462791,2084},{844629,2060},
{404537,2012},{457123,2004},{577589,1938},{638347,1916},
{892325,1882},{182523,1862},{1002505,1842},{624371,1836},
{69057,1817},{210787,1786},{558769,1768},{395623,1750},
{992745,1744},{317855,1727},{384877,1710},{372185,1699},
{105027,1693},{423751,1661},{408961,1635},{908331,1630},
{74551,1620},{36933,1605},{617371,1591},{506045,1586},
{24929,1558},{529709,1548},{1042435,1535},{31867,1517},
{166037,1495},{928781,1478},{508975,1458},{4327,1442},
{779637,1430},{742091,1418},{258263,1411},{879631,1396},
{72029,1385},{728905,1377},{589057,1363},{348621,1356},
{671515,1332},{710453,1315},{84249,1296},{959363,1292},
{685853,1277},{467591,1274},{646643,1267},{683029,1264},
{439927,1249},{254461,1229},{660713,1223},{554195,1220},
{202911,1215},{753253,1195},{941457,1190},{776635,1187},
{509511,1182},{986147,1156},{768879,1151},{699431,1140},
{696417,1128},{86169,1119},{808997,1114},{25467,1107},
{201353,1100},{708087,1084},{1018339,1079},{341297,1073},
{434151,1066},{96287,1058},{950765,1051},{298257,1039},
{675933,1035},{167731,1029},{815445,1027},
/* Element j gives the index of the first prime of size 3+j bits */
static uint8_t
prime_by_size[9] = {
1,3,5,10,17,30,53,96,171
};
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/* Combined Miller-Rabin test to the base a, and checking the
conditions from Pocklington's theorem. */
static int
miller_rabin_pocklington(mpz_t n, mpz_t nm1, mpz_t nm1dq, mpz_t a)
{
mpz_t r;
mpz_t y;
int is_prime = 0;
/* Avoid the mp_bitcnt_t type for compatibility with older GMP
versions. */
unsigned k;
unsigned j;
VERBOSE(".");
if (mpz_even_p(n) || mpz_cmp_ui(n, 3) < 0)
return 0;
mpz_init(r);
mpz_init(y);
k = mpz_scan1(nm1, 0);
assert(k > 0);
mpz_fdiv_q_2exp (r, nm1, k);
mpz_powm(y, a, r, n);
if (mpz_cmp_ui(y, 1) == 0 || mpz_cmp(y, nm1) == 0)
for (j = 1; j < k; j++)
{
mpz_powm_ui (y, y, 2, n);
if (mpz_cmp_ui (y, 1) == 0)
break;
if (mpz_cmp (y, nm1) == 0)
{
passed_miller_rabin:
/* We know that a^{n-1} = 1 (mod n)
Remains to check that gcd(a^{(n-1)/q} - 1, n) == 1 */
VERBOSE("x");
mpz_powm(y, a, nm1dq, n);
mpz_sub_ui(y, y, 1);
mpz_gcd(y, y, n);
is_prime = mpz_cmp_ui (y, 1) == 0;
VERBOSE(is_prime ? "\n" : "");
break;
}
}
mpz_clear(r);
mpz_clear(y);
return is_prime;
}
/* The algorithm is based on the following special case of
Pocklington's theorem:
Assume that n = 1 + f q, where q is a prime, q > sqrt(n) - 1. If we
can find an a such that
a^{n-1} = 1 (mod n)
then n is prime.
Proof: Assume that n is composite, with smallest prime factor p <=
sqrt(n). Since q is prime, and q > sqrt(n) - 1 >= p - 1, q and p-1
are coprime, so that we can define u = q^{-1} (mod (p-1)). The
assumption a^{n-1} = 1 (mod n) implies that also a^{n-1} = 1 (mod
p). Since p is prime, we have a^{(p-1)} = 1 (mod p). Now, r =
(n-1)/q = (n-1) u (mod (p-1)), and it follows that a^r = a^{(n-1)
u} = 1 (mod p). Then p is a common factor of a^r - 1 and n. This
contradicts gcd(a^r - 1, n) = 1, and concludes the proof.
If n is specified as k bits, we need q of size ceil(k/2) + 1 bits
(or more) to make the theorem apply.
*/
/* Generate a prime number p of size bits with 2 p0q dividing (p-1).
p0 must be of size >= ceil(bits/2) + 1. The extra factor q can be
omitted. If top_bits_set is one, the top most two bits are one,
suitable for RSA primes. */
_nettle_generate_pocklington_prime (mpz_t p, mpz_t r,
unsigned bits, int top_bits_set,
Niels Möller
committed
void *ctx, nettle_random_func *random,
const mpz_t p0,
const mpz_t q,
const mpz_t p0q)
assert (2*mpz_sizeinbase (p0, 2) > bits + 1);
mpz_init (r_min);
mpz_init (r_range);
mpz_init (pm1);
mpz_init (a);
if (top_bits_set)
{
/* i = floor (2^{bits-3} / p0q), then 3I + 3 <= r <= 4I, with I
- 2 possible values. */
mpz_set_ui (r_min, 1);
mpz_mul_2exp (r_min, r_min, bits-3);
mpz_fdiv_q (r_min, r_min, p0q);
mpz_sub_ui (r_range, r_min, 2);
mpz_mul_ui (r_min, r_min, 3);
mpz_add_ui (r_min, r_min, 3);
}
else
{
/* i = floor (2^{bits-2} / p0q), I + 1 <= r <= 2I */
mpz_set_ui (r_range, 1);
mpz_mul_2exp (r_range, r_range, bits-2);
mpz_fdiv_q (r_range, r_range, p0q);
mpz_add_ui (r_min, r_range, 1);
}
nettle_mpz_random (r, ctx, random, r_range);
mpz_add (r, r, r_min);
/* Set p = 2*r*p0q + 1 */
mpz_mul_2exp(r, r, 1);
mpz_mul (pm1, r, p0q);
mpz_add_ui (p, pm1, 1);
assert(mpz_sizeinbase(p, 2) == bits);
/* Should use GMP trial division interface when that
materializes, we don't need any testing beyond trial
division. */
if (!mpz_probab_prime_p (p, 1))
continue;
random(ctx, sizeof(buf), buf);
mpz_set_ui (a, buf[0] + 2);
if (q)
{
mpz_t e;
int is_prime;
mpz_init (e);
mpz_mul (e, r, q);
is_prime = miller_rabin_pocklington(p, pm1, e, a);
mpz_clear (e);
if (is_prime)
break;
}
else if (miller_rabin_pocklington(p, pm1, r, a))
mpz_clear (r_min);
mpz_clear (r_range);
mpz_clear (pm1);
mpz_clear (a);
}
/* Generate random prime of a given size. Maurer's algorithm (Alg.
6.42 Handbook of applied cryptography), but with ratio = 1/2 (like
nettle_random_prime(mpz_t p, unsigned bits, int top_bits_set,
Niels Möller
committed
void *random_ctx, nettle_random_func *random,
void *progress_ctx, nettle_progress_func *progress)
{
assert (bits >= 3);
if (bits <= 10)
{
unsigned first;
unsigned choices;
uint8_t buf;
assert (!top_bits_set);
random (random_ctx, sizeof(buf), &buf);
first = prime_by_size[bits-3];
choices = prime_by_size[bits-2] - first;
mpz_set_ui (p, primes[first + buf % choices]);
}
else if (bits <= 20)
{
unsigned long highbit;
uint8_t buf[3];
unsigned long x;
unsigned j;
highbit = 1L << (bits - 1);
again:
random (random_ctx, sizeof(buf), buf);
x = READ_UINT24(buf);
x &= (highbit - 1);
x |= highbit | 1;
for (j = 0; prime_square[j] <= x; j++)
{
unsigned q = x * trial_div_table[j].inverse & TRIAL_DIV_MASK;
if (q <= trial_div_table[j].limit)
goto again;
}
mpz_set_ui (p, x);
}
else
{
mpz_t q, r;
mpz_init (q);
mpz_init (r);
/* Bit size ceil(k/2) + 1, slightly larger than used in Alg. 4.62
in Handbook of Applied Cryptography (which seems to be
incorrect for odd k). */
nettle_random_prime (q, (bits+3)/2, 0, random_ctx, random,
progress_ctx, progress);
_nettle_generate_pocklington_prime (p, r, bits, top_bits_set,
random_ctx, random,
if (progress)
progress (progress_ctx, 'x');
mpz_clear (q);
mpz_clear (r);