Skip to content
Snippets Groups Projects
rsa.c 4.45 KiB
Newer Older
  • Learn to ignore specific revisions
  • /* rsa.c
     *
     * The RSA publickey algorithm.
     */
    
    /* nettle, low-level cryptographics library
     *
     * Copyright (C) 2001 Niels Mller
     *  
     * The nettle library is free software; you can redistribute it and/or modify
     * it under the terms of the GNU Lesser General Public License as published by
     * the Free Software Foundation; either version 2.1 of the License, or (at your
     * option) any later version.
     * 
     * The nettle library is distributed in the hope that it will be useful, but
     * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
     * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
     * License for more details.
     * 
     * You should have received a copy of the GNU Lesser General Public License
     * along with the nettle library; see the file COPYING.LIB.  If not, write to
     * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
     * MA 02111-1307, USA.
     */
    
    #if HAVE_CONFIG_H
    #include "config.h"
    #endif
    
    #if HAVE_LIBGMP
    
    #include "rsa.h"
    
    #include "bignum.h"
    
    /* FIXME: Perhaps we should split this into several functions, so that
     * one can link in the signature functions without also getting the
     * verify functions. */
    
    
    void
    rsa_init_public_key(struct rsa_public_key *key)
    {
      mpz_init(key->n);
      mpz_init(key->e);
    
      /* Not really necessary, but it seems cleaner to initialize all the
       * storage. */
      key->size = 0;
    }
    
    void
    rsa_clear_public_key(struct rsa_public_key *key)
    {
      mpz_clear(key->n);
      mpz_clear(key->e);
    }
    
    
    /* Computes the size, in octets, of a size BITS modulo.
     * Returns 0 if the modulo is too small to be useful. */
    
    static unsigned
    
      unsigned size = (mpz_sizeinbase(n, 2) + 7) / 8;
    
    
      /* For PKCS#1 to make sense, the size of the modulo, in octets, must
       * be at least 11 + the length of the DER-encoded Digest Info.
       *
       * And a DigestInfo is 34 octets for md5, and 35 octets for sha1.
       * 46 octets is 368 bits. */
      
      if (size < 46)
    
        return 0;
    
      return size;
    }
    
    int
    rsa_prepare_public_key(struct rsa_public_key *key)
    {
      /* FIXME: Add further sanity checks, like 0 < e < n. */
    #if 0
      if ( (mpz_sgn(key->e) <= 0)
           || mpz_cmp(key->e, key->n) >= 0)
        return 0;
    #endif
      
    
      key->size = rsa_check_size(key->n);
    
    void
    rsa_init_private_key(struct rsa_private_key *key)
    {
      mpz_init(key->p);
      mpz_init(key->q);
      mpz_init(key->a);
      mpz_init(key->b);
      mpz_init(key->c);
    
    
      /* Not really necessary, but it seems cleaner to initialize all the
       * storage. */
      key->size = 0;
    
    }
    
    void
    rsa_clear_private_key(struct rsa_private_key *key)
    {
      mpz_clear(key->p);
      mpz_clear(key->q);
      mpz_clear(key->a);
      mpz_clear(key->b);
      mpz_clear(key->c);
    }
    
    
    rsa_prepare_private_key(struct rsa_private_key *key)
    
      /* FIXME: Add further sanity checks. */
    
      mpz_t n;
      
      /* The size of the product is the sum of the sizes of the factors,
       * or sometimes one less. It's possible but tricky to compute the
       * size without computing the full product. */
    
      mpz_init(n);
      mpz_mul(n, key->p, key->q);
    
      key->size = rsa_check_size(n);
    
      mpz_clear(n);
      
    
    /* Computing an rsa root. */
    
    rsa_compute_root(struct rsa_private_key *key, mpz_t x, const mpz_t m)
    
      mpz_t xp; /* modulo p */
      mpz_t xq; /* modulo q */
    
      mpz_init(xp); mpz_init(xq);    
    
      /* Compute xq = m^d % q = (m%q)^b % q */
      mpz_fdiv_r(xq, m, key->q);
      mpz_powm(xq, xq, key->b, key->q);
    
      /* Compute xp = m^d % p = (m%p)^a % p */
      mpz_fdiv_r(xp, m, key->p);
      mpz_powm(xp, xp, key->a, key->p);
    
      /* Set xp' = (xp - xq) c % p. */
      mpz_sub(xp, xp, xq);
      mpz_mul(xp, xp, key->c);
      mpz_fdiv_r(xp, xp, key->p);
    
      /* Finally, compute x = xq + q xp'
       *
       * To prove that this works, note that
       *
       *   xp  = x + i p,
       *   xq  = x + j q,
       *   c q = 1 + k p
       *
       * for some integers i, j and k. Now, for some integer l,
       *
       *   xp' = (xp - xq) c + l p
       *       = (x + i p - (x + j q)) c + l p
       *       = (i p - j q) c + l p
       *       = (i c + l) p - j (c q)
       *       = (i c + l) p - j (1 + kp)
       *       = (i c + l - j k) p - j
       *
       * which shows that xp' = -j (mod p). We get
       *
       *   xq + q xp' = x + j q + (i c + l - j k) p q - j q
       *              = x + (i c + l - j k) p q
       *
       * so that
       *
       *   xq + q xp' = x (mod pq)
       *
       * We also get 0 <= xq + q xp' < p q, because
       *
       *   0 <= xq < q and 0 <= xp' < p.
       */
      mpz_mul(x, key->q, xp);
      mpz_add(x, x, xq);
    
      mpz_clear(xp); mpz_clear(xq);
    
    }
    
    #endif /* HAVE_LIBGMP */