Skip to content
Snippets Groups Projects
aes.c-hacked 4.78 KiB
Newer Older
  • Learn to ignore specific revisions
  • /* aes.c
     *
     * The aes/rijndael block cipher.
     */
    
    /* nettle, low-level cryptographics library
     *
     * Copyright (C) 2000, 2001 Rafael R. Sevilla, Niels Mller
     *  
     * The nettle library is free software; you can redistribute it and/or modify
     * it under the terms of the GNU Lesser General Public License as published by
     * the Free Software Foundation; either version 2.1 of the License, or (at your
     * option) any later version.
     * 
     * The nettle library is distributed in the hope that it will be useful, but
     * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
     * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
     * License for more details.
     * 
     * You should have received a copy of the GNU Lesser General Public License
     * along with the nettle library; see the file COPYING.LIB.  If not, write to
     * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
     * MA 02111-1307, USA.
     */
    
    /* Originally written by Rafael R. Sevilla <dido@pacific.net.ph> */
    
    #if HAVE_CONFIG_H
    # include "config.h"
    #endif
    
    #include <assert.h>
    
    #include "aes-internal.h"
    
    #include "macros.h"
    
    #ifndef AES_DEBUG
    # define AES_DEBUG 0
    #endif
    
    #if AES_DEBUG
    # include <stdio.h>
    
    static void
    d4(const char *name, unsigned r, const uint32_t *data)
    {
      unsigned j;
      
      fprintf(stderr, "aes, %d, %s: ", r, name);
    
      for (j = 0; j<4; j++)
        fprintf(stderr, "%08x, ", data[j]);
      fprintf(stderr, "\n");
    }
    static void
    d2(const char *aname, uint32_t a, const char *bname,  uint32_t b)
    {
      fprintf(stderr, "aes, %s: %08x, %s, %08x\n",
    	  aname, a, bname, b);
    }
    static void
    d1(const char *name, uint32_t a)
    {
      fprintf(stderr, "aes, %s: %08x\n",
    	  name, a);
    }
    # define D4(x) d4 x
    # define D2(x) d2 x
    # define D1(x) d2 x
    #else
    # define D4(x)
    # define D2(x)
    # define D1(x)
    #endif
    
    /* Get the byte with index 0, 1, 2 and 3 */
    #define B0(x) ((x) & 0xff)
    #define B1(x) (((x) >> 8) & 0xff)
    #define B2(x) (((x) >> 16) & 0xff)
    #define B3(x) (((x) >> 24) & 0xff)
    
    #define IDX0(j) (j)
    #define IDX1(j) (T->idx[0][j])
    #define IDX2(j) (T->idx[1][j])
    #define IDX3(j) (T->idx[2][j])
    
    /* NOTE: IDX2 can be done as j ^ 2, but that doesn't seem to make much
     * of a difference. */
    
    #define SWAP(a, b) \
    do { uint32_t *t_swap = (a); (a) = (b); (b) = t_swap; } while(0)
    
    void
    _aes_crypt(const struct aes_ctx *ctx,
    	   const struct aes_table *T,
    	   unsigned length, uint8_t *dst,
    	   const uint8_t *src)
    {
      FOR_BLOCKS(length, dst, src, AES_BLOCK_SIZE)
        {
          /* Use double buffering, reading one half of the buffer writing
           * to the other, and then swapping the role of the two
           * halves. */
          uint32_t buffer[8];
          uint32_t *wtxt;		/* working ciphertext */
          uint32_t *tmp;
          
          unsigned i;
          unsigned round;
    
          wtxt = buffer; tmp = buffer + 4;
          
          /* Get clear text, using little-endian byte order.
           * Also XOR with the first subkey. */
          for (i = 0; i<4; i++)
    	wtxt[i] = LE_READ_UINT32(src + 4*i) ^ ctx->keys[i];
    
          for (round = 1; round < ctx->nrounds; round++)
    	{
    	  unsigned j;
    
    	  D4(("wtxt", round, wtxt));
    	  D4(("key", round, &ctx->keys[4*round]));
    
    	  /* What's the best way to order this loop? Ideally,
    	   * we'd want to keep both t and wtxt in registers. */
    
    	  for (j=0; j<4; j++)
    	    {
    	      /* FIXME: Figure out how the indexing should really be
    	       * done. With the current idx arrays, it looks like the
    	       * code shifts the rows in the wrong direction. But it
    	       * passes the testsuite. Perhaps the tables are rotated
    	       * in the wrong direction, but I don't think so. */
    	      uint32_t t;
    #if AES_SMALL
    	      t =            T->table[0][ B0(wtxt[IDX0(j)]) ] ^
    		ROTRBYTE(    T->table[0][ B1(wtxt[IDX1(j)]) ]^
    		  ROTRBYTE(  T->table[0][ B2(wtxt[IDX2(j)]) ] ^
    		    ROTRBYTE(T->table[0][ B3(wtxt[IDX3(j)]) ])));
    #else /* !AES_SMALL */
    	      t = (  T->table[0][ B0(wtxt[IDX0(j)]) ]
    		   ^ T->table[1][ B1(wtxt[IDX1(j)]) ]
    		   ^ T->table[2][ B2(wtxt[IDX2(j)]) ]
    		   ^ T->table[3][ B3(wtxt[IDX3(j)]) ]);
    #endif /* !AES_SMALL */
    	      D1(("t", t));
    	      tmp[j] = t ^ ctx->keys[4*round + j];
    	    }
    	  SWAP(tmp, wtxt);
    #if 0
    	  D4(("t", round, t));
    
    	  for (j = 0; j<4; j++)
    	    wtxt[j] = t[j] ^ ctx->keys[4*round + j];
    #endif
    	}
          /* Final round */
          {
    	uint32_t out;
    	unsigned j;
    	for (j = 0; j<4; j++)
    	  {
    	    /* FIXME: Figure out how the indexing should really be done.
    	     * It looks like this code shifts the rows in the wrong
    	     * direction, but it passes the testsuite. */
    
    	    out = (   (uint32_t) T->sbox[ B0(wtxt[IDX0(j)]) ]
    		   | ((uint32_t) T->sbox[ B1(wtxt[IDX1(j)]) ] << 8)
    		   | ((uint32_t) T->sbox[ B2(wtxt[IDX2(j)]) ] << 16)
    		   | ((uint32_t) T->sbox[ B3(wtxt[IDX3(j)]) ] << 24));
    
    	    D2(("t", out, "key", ctx->keys[4*round + j]));
    
    	    out ^= ctx->keys[4*round + j];
    
    	    LE_WRITE_UINT32(dst + 4*j, out);
    	  }
          }
        }
    }